期刊文献+

HIV-1B亚型gag基因密码子优化及其免疫原性的研究 被引量:2

Codon Modification of HIV-1 Subtype B gag Gene and Its Immunogenicity in Mice
下载PDF
导出
摘要 从河南HIV-1流行区感染者中克隆HIV-1 B亚型gag基因,通过序列比对获得其一致性共有序列,对该共有序列按照哺乳动物优势密码子的使用原则进行优化,以Western blot方法比较优化前后gag基因体外表达量。发现对gag基因进行密码子优化可显著提高其表达水平。将优化后的mod.gag基因插入重组腺病毒载体,构建了重组病毒rAdV-mod.gag。在BALB/c小鼠体内分别以108PFU及109PFUr AdV-mod.gag疫苗单独免疫两次均可产生较高水平的gag特异性细胞免疫反应。由此得出结论,对gag基因的密码子优化是成功的;表达优化后gag基因的重组腺病毒疫苗,可以在小鼠体内诱导较强的gag基因特异性CTL应答。 HIV-1 subtype B gag genes were cloned from the infected paid blood donors in Henan, and the consensus sequence based on these prevalent strains was obtained by aligning. The codons of the consensus gag sequence were modified according to mammalian codon usage. Western blot analysis was used to compare the expression level of wild type and codon-modified gag gene. It was found that the expression level of Gag protein was improved largely by codon-modification. Then the mod. gag gene was inserted into the adenovirus vector and the recombinant adenovirus rAdV-mod, gag was constructed, 10^8 PFU or 10^9 PFU rAdV-mod, gag vaccinated mice twicely could elicit high level Gag-specific CTL responses in immunized mice. In conclusion,the codon modification of gag gene is successful. The recombinant adenovirus vaccine harbouring mod. gag can induce robust Gag-specific CTL immune response in mice.
出处 《病毒学报》 CAS CSCD 北大核心 2008年第3期190-195,共6页 Chinese Journal of Virology
基金 中国综合性艾滋病研究项目(CIPRA,U19AI5191505) 国家863计划(2003AA219070)
关键词 HIV-1 GAG 密码子优化 重组腺病毒 CTL应答 HIV-1 gag optimized codon usage recombinant adenovirus CTL response
  • 相关文献

参考文献13

  • 1Ferrari G, Kostyu D D, Cox J, et al. Identification of highly conserved and broadly cross-reactive HIV type 1 cytotoxic T lymphocyte epitopes as candidate immunogens for inclusion in Mycobacterium bovis BCG-vectored HIV vaccines [J]. AIDS Res Hum Retroviruses, 2000, 16 (14) :1433-1443.
  • 2Novitsky V, Cao H, Rybak N, et al. Magnitude and frequency of cytotoxic T-lymphocyte responses: identification of immunodominant regions of human immunodeficiency virus type 1 subtype C [J]. J Virol, 2002, 76 (50) : 10155-10168.
  • 3Kiepiela P, Nqumbela K, Thobakqale C, et al. CD8^+ T-cell responses to different HIV proteins have discordant associations with viral load [J]. Nat Med, 2007, 13 (1):46-53.
  • 4Geldmacher C, Currier J R, Herrmann E, et al. CD8 Tcell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steadystate viremia in human immunodeficiency virus type 1-seropositive patients [J]. J Virol,2007, 81(5) :2440-2448.
  • 5Leligdowicz A, Yindom L M, Onyango C, et al. Robust Gag-specific T cell responses characterize viremia control in HIV-2 infection [J]. J Clin Invest, 2007, 117(10) : 3067-3074.
  • 6Betts M R, Ambrozak D R, Douek D C, et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4^+ and CD8^+ T-cell responses: relationship to viral load in untreated HIV infection [J]. J Virol,2001, 75 (24) : 11983-11991.
  • 7Cmarko D, Boe S O ,Scassellati C ,et al. Rev inhibition strongly affects intracellular distribution of human immunodeficiency virus type 1 RNAs[J] . J Virol, 2002, 76 (20) :10473 - 10484.
  • 8Letvin N L. Strategies for an HIV vaccine [J]. J Clin Invest, 2002, 110 (1):15-20.
  • 9Kim D, Elizaqa M, Duerr A. HIV vaccine efficacy trials: towards the future of HIV prevention [J]. Infect Dis Clin North Am, 2007, 21(1):201-217.
  • 10Xiang Z Q, Yang Y, Wilson J M, et al. A replicationdefective human adenovirus recombinant serves as a highly efficacious vaccine carrier [J]. Virology, 1996, 219 (1) :220-227.

同被引文献35

  • 1印春生.合成肽疫苗研究进展[J].中国兽药杂志,2005,39(11):29-33. 被引量:14
  • 2YAN P,ZHAO Y,ZHANG X,et al.An infectious disease ofducks caused by a newly emerged Tembusu virus strain inChina's Mainland[J].Virology,2011,417(1):1-8.
  • 3RAMAKRISHNA L,ANAND K K,MAHALINGAM M,etal.Codon optimization and ubiquitin conjugation of humanimmunodeficiency virus-1Tat lead to enhanced cell-mediatedimmune responses[J].Vaccine,2004,22(20):2586-2598.
  • 4MODIS Y,OGATA S,CLEMENTS D,et al.Structure of thedengue virus envelop protein after membrane fusion[J].Na-ture,2004,427(6972):313-319.
  • 5REY F A.Dengue virus envelope glycoprotein structure:newinsight into its interactions during viral entry[J].Proc NatlAcad Sci USA,2003,100(12):6899-6901.
  • 6SELIGMAN S J,BUCHER D J.The importance of being ou-ter:consequance of the distinction between the outer and innersurfaces of flavivirus glycoprotein E[J].Trends Microbiol,2003,11(3):108-110.
  • 7HURRELBRINK R J,MCMINN P C.Molecular determinantsof virulence:the structural and functional basis for flavivirusattenuation[J].Adv Virus Res,2003,60(1):1-42.
  • 8ANDRS,SEED B,EBERLE J,et al.Increased immuneresponse elicited by DNA vaccination with a synthetic gp120sequence with optimized codon usage[J].J Virol,1998,72(2):1497-1503.
  • 9HENRIQUES A M,MADEIRA C,FEVEREIRO M,et al.Effect of cationic liposomes/DNA charge ratio on gene ex-pression and antibody response of a candidate DNA vaccineagainst Maedi Visna virus[J].Int J Pharm,2009,377(1/2):92-98.
  • 10GREENLAND J R,LETVIN N L.Chemical adjuvants forplasmid DNA vaccines[J].Vaccine,2007,25(19):3731-3741.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部