期刊文献+

p型ZnO薄膜制备的研究进展 被引量:3

Research Progress in Fabrication of p-Type ZnO Films
下载PDF
导出
摘要 ZnO是一种性能优异的"低温蓝光工程"宽带隙Ⅱ-Ⅵ族半导体材料,但因本征施主缺陷和施主杂质引起的自补偿效应等使ZnO很难有效地实现n型向p型导电的转变。为此,阐述了ZnO薄膜的p型掺杂机理,介绍了国内外研究者在抑制自补偿、提高受主掺杂元素固溶度及寻求合适的受主掺杂元素等方面p型ZnO薄膜的最新研究进展。研究表明:增加ZnO材料中N原子固溶度的各种办法如施主-受主共掺杂、超声雾化气相淀积及本征ZnO薄膜在NH3气氛下后退火等和选择IB族中的Ag为受主掺杂元素是实现ZnO薄膜p型导电的有效措施。期望通过本综述能为国内ZnO基器件应用的p型ZnO薄膜的制备提供新思路。 Znic oxide (ZnO) is a versatile Ⅱ-Ⅵ group semiconductor material with a wide bandgap and is applied in low temperature and blue light devices. Owing to the self-compensation effect resulted from the native donor defects and impurity, the transformation from the n-type to p-type ZnO film is very difficult. Therefore the p-type doped mechanism of ZnO films is discussed, and the latest research progress in the fabrication of p-type ZnO films related to the re- straint of self-compensation, the enhancement of the acceptor solid solubility in ZnO films, and the choice of proper acceptor elements is thoroughly reviewed. The research results demonstrate that the enhancement of N atoms solid solubility in ZnO films through the co-doping of donor and acceptor, ultrasonic spray pyrolysis deposition, the post-annealing intrinsic ZnO in NH3 ambient, and the choice of appropriate donor such as Ag atoms in group-IB elements are effective methods in the fabrication of p-type ZnO films. This paper provides valuable ideas for the realiza- tion of p-type ZnO materials in ZnO-based devices.
出处 《微纳电子技术》 CAS 2008年第6期311-317,321,共8页 Micronanoelectronic Technology
关键词 ZNO薄膜 P型掺杂 自补偿 共掺杂 IB族元素掺杂 ZnO films p-type doping self-compensation effect co-doping group-IB elementsdoping
  • 相关文献

参考文献31

  • 1LOOK D C. Recent advances in ZnO materials and devices [J]. Materials Science and Engineering: B, 2001, 80 (1- 3) : 383- 387.
  • 2SERVICE R F. Will UV lasers beat the blues? [J]. Science, 1997, 276 (5314): 895-899.
  • 3RYU Y R, LEE T S, LUBGUBAN J A, et al. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes [J]. Applied Physical Letter, 2006, 88 (24): 241108-241110.
  • 4ZHANG S B, WEI S H, ZUNGER A. A phenomenological model for systematization and prediction of doping limits in Ⅱ-Ⅵand Ⅰ-Ⅲ-Ⅵ2 compounds [J]. J Appl Phys, 1998, 83 (6): 3192-3196.
  • 5KOBAYASHI A, SANKEY O F, VOLZ S M, et al. Semiempirical tight-binding band structures of wurtzite semiconductors: AlN, CdS, CdSe, ZnS, and ZnO [J]. Phys Rev: B, 1983,28 (2): 935-945.
  • 6PARK C H, ZHANG S B, WEI S H. Origin of p-type doping difficulty in ZnO: the impurities perspective [J]. Phys Rev: B, 2002, 66 (7): 073202.1-073207.3.
  • 7Look D C, Jones R L, Sizelove J R, et al. The path to ZnO devices: donor and acceptor dynamics [J]. Physica Status Solidi: A, 2003, 95 (1):171-176.
  • 8Cohan A F, Ceder G, Morgen D, et al. First principles study of native point defects in ZnO [J]. Phys Rev: B, 2000, 61 (22): 15019- 15027.
  • 9FUJIHARA S, SASAKI C, KIMURA T. Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films [J]. J European Ceramic Society, 2001, 21 (10/ 11): 2109-2112.
  • 10KANAI Y. Admittance spectroscopy of ZnO crystals [J]. J J Appl Phys, 1990, 29 (8): 1426- 1430.

同被引文献55

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部