期刊文献+

基于微粒群算法的最佳证券投资组合研究 被引量:19

Study on the Portfolio Problem Based on Particle Swarm Optimization
下载PDF
导出
摘要 微粒群优化(PSO)算法是新近出现的一种仿生算法,简单容易实现,而且随机搜索,不易陷于局部最优。本文将该算法引入证券投资组合领域,研究允许卖空证券和不允许卖空证券两种情形下的投资组合优化问题。文中首先系统介绍PSO算法原理、流程以及算法的改进发展,然后分析了卖空证券投资和不允许卖空证券投资两种情形下的优化模型,接下来介绍了应用PSO算法编码解决证券投资组合优化的方法步骤。最后,通过两个应用实例,计算表明PSO算法可以准确快速地解决证券投资组合优化问题。 The Particle Swarm Optimization (PSO)is an evolutionary computation, which not only can search solutions randomly and universally, but also is convenient to be carried out. And hence, the article focuses on the application of PSO to the portfolio problem, looking forward to seeking best solutions easily and quickly. After introducing the basic theory of the algorithms and its several versions, the article puts forward two models of portfolio problem. In the following parts, the article introduces how to apply PSO to solve the portfolio problem in detail. The numeric example followed indicates that PSO can solve the portfolio problem exactly and quickly.
出处 《系统管理学报》 北大核心 2008年第2期221-224,234,共5页 Journal of Systems & Management
基金 国家自然科学基金资助项目(70572043)
关键词 微粒群优化 证券组合投资问题 经济优化 particle swarm optimization (PSO) portfolio problem economic optimization
  • 相关文献

参考文献17

  • 1龚哲君.Hopfield网络优化及证券投资组合问题求解[J].凉山大学学报,2002,4(3):21-23. 被引量:4
  • 2周群,孙德宝.遗传算法求解最佳证券投资组合[J].科技进步与对策,2001,18(3):146-148. 被引量:9
  • 3李宝家,李东日.求解证券组合问题的拟模拟退火算法[J].沈阳工业大学学报,2000,22(6):522-524. 被引量:4
  • 4[4]Kennedy J,Eberhart R.Particle swarm optimization[C]//Proc IEEE Int Conf on Neural Networks[C].Perth,1995:1942-1948.
  • 5[5]Eberhart R,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proc IEEE Int Conf on Evolutionary Computation.La Jolla,2000:84-88.
  • 6[6]Eberhart R,Shi Yuhui.Particle swarm optimization:Developments,applications and resources[C]//Proc IEEE Int Conf on Evolutionary computation.Seoul,2001:81-86.
  • 7[7]Ioan Cristian Trelea.The particle swarm optimization algorithm:Convergence analysis and parameter selection[C]//Proc IEEE Int Conf on Evolutionary computation.[s.n.],2002:317-325.
  • 8谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 9[9]Shi Y H,Eberhart R.Fuzzy adaptive particle swarm optimization[C]//Proc IEEE Int Conf on Evolutionary Computation.Seoul,2001:101-106.
  • 10[10]Van den Bergh F,Engelbrecht.Training product unit networks using cooperative particle swarm optimizers[C]//Proc of the 3rd Genetic and Evolutionary Computation Conference (GECCO).San Francisco,USA,2001.

二级参考文献53

  • 1徐宗本,李国.解全局优化问题的仿生类算法(I)—模拟进化算法[J].运筹学杂志,1995,14(2):1-13. 被引量:39
  • 2王安民,刘翔.证券投资组合模型分析[J].西安电子科技大学学报,1996,23(4):468-473. 被引量:6
  • 3陈共.证券投资学[M].中国人民大学出版社,1995(1)..
  • 4刘宝碇 赵端清.随机规划和模糊规划[M].清华大学出版社,1998.1.
  • 5[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 6[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 7[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 8[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 9[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 10[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.

共引文献926

同被引文献197

引证文献19

二级引证文献274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部