期刊文献+

状态扩展元胞自动机模型在时空数据挖掘中的应用 被引量:2

Application of Extended State Cellular Automata to Spatiotemporal Data Mining
下载PDF
导出
摘要 引入状态扩展元胞自动机模型对时空数据进行挖掘,其核心是引入可以量化的属性和不可量化的状态对元胞状态进行扩展,解决时空数据挖掘中数据稀疏性和属性数据交互性问题,采用遗传算法寻找元胞自动机模型的最优规则。实验结果表明,对于复杂的非线性和数据稀疏性问题,利用该方法能得到比传统方法更好的结果。 The paper introduces an extended state cellular automata (CA) model to spatiotemporal data mining(STDM). The core of the model adds numerable and uncountable attribute to the cell and intends to resolve the problem of the sparse data and large attribute in- formation interaction in the spatial and spatiotemporal data mining tasks. The preliminary experiment shows the approach is suited for the nonlinear problems, even in the face of sparse data. They can tackle problems of previously prohibitive complexity and also improve previous approaches. The paper advises the method in combination with domain knowledge and other data mining techniques offer a chance to discover nonlinear spatiotemporal relationships.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2008年第6期592-595,共4页 Geomatics and Information Science of Wuhan University
基金 广东省科技创新基金资助项目(2007C32902)
关键词 元胞自动机 遗传算法 时空数据挖掘 模式识别 智能地理信息系统 CA genetic algorithm STDM pattern recognize intelligent GIS
  • 相关文献

参考文献7

  • 1黎夏,叶嘉安.知识发现及地理元胞自动机[J].中国科学(D辑),2004,34(9):865-872. 被引量:84
  • 2Shashi S V. Spatial Contextual Classification and Prediction Models for Mining Geospatial Data[J].IEEE Trans on Multimedia,2002(4).- 174-188.
  • 3Breukelaar R. Using a Genetic Algorithm to Evolve Behavior in Multi Dimensional Cellular Automata [C]. GECCO'05, Washington, D C, 2005.
  • 4FreitasA. Understanding the Crucial Role of Attribute Interaction in Data Mining[J]. Artificial Intelligence Review,2001, 16:177-199.
  • 5Chawla S, Shekhar S, Wu W, et al. Modeling Spatial Dependencies for Mining Geospatial Data: an Introduction[M]//Miller H, Han .1. Geographic Data Mining and Knowledge Discovery. London: Taylor and Francis, 2001.
  • 6Hu Gongzhu. An Extended Cellular Automata Model for Data Mining of Land Development Data [C]. The 5th IEEE/ACIS International Conference on Computer and Information Science, Honolulu, 2006.
  • 7罗平.地理特征元胞自动机及在深圳特区土地利用演化中应用[D].武汉:武汉大学,2004.

二级参考文献16

  • 1[1]Batty M, Xie Y. From cells to cities. Environment and Planning B,1994, 21:531~548
  • 2[2]White R, Engelen G. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A, 1993, 25:1175~1199
  • 3[6]Li Xia, Yeh A G O. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 2000, 14(2):131~152
  • 4[7]Li Xia, Yeh A G O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 2002, 16(4):323~343
  • 5[8]Clarke K C, Brass J A, Riggan P J. A cellular automata model of wildfire propagation and extinction. Photogrammetric Engineering & Remote Sensing, 1994, 60:1355~1367
  • 6[9]Couclelis H. Of mice and men: what rodent populations can teach us about complex spatial dynamics. Environment and Planning A, 1988, 20:99~109
  • 7[10]Yeh A G O, Li Xia. A constrained CA model for the simulation and planning of sustainable urban forms by using GIS. Environment and Planning B, 2001, 28:733~753
  • 8[11]Li Xia, Yeh A G O. Zoning for agricultural land protection by the integration of remote sensing, GIS and cellular automata. Photogrammetric Engineering & Remote Sensing, 2001, 67(4): 471 ~477
  • 9[12]Wolfram S. Cellular automata: a model of complexity. Nature,1984, 31:419~424
  • 10[13]Couclelis H. From cellular automata to urban models: new principles for model development and implementation. Environment and Planning B, 1997, 24:165~174

共引文献83

同被引文献19

  • 1柯长青,欧阳晓莹.基于元胞自动机模型的城市空间变化模拟研究进展[J].南京大学学报(自然科学版),2006,42(1):103-110. 被引量:23
  • 2杨丽徙,王金风,陈根永,王家耀.基于元胞自动机理论的电力负荷空间分布预测[J].中国电机工程学报,2007,27(4):15-20. 被引量:27
  • 3HU G Z. An extended cellular automata model for data mining of land development data [C]// The 5th IEEE/ ACIS International Conference on Computer and Information Science, July 10-12, 2006, Honolulu, Hawaii, USA. [s. l.]: IEEE, 2006: 201-207.
  • 4ZANG D Y, ZHOU G Q. Area spatial object co registration between imagery and GIS data for spatialtemporal change analysis[C]// IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, July 7 11, 2008, Boston, MA, USA. [s.l.]: IEEE, 2008: 2597-2600.
  • 5Breukelaar R. Using a genetic algorithm to evolve behavior in multi dimensional cellular automata[C]// Proceedings of the 2005 conference on Genetic and evolutionary computation , June 25-29, 2005, Washington D C, USA. [s.l.]: IEEE, 2005: 107-114.
  • 6LO SC, HSU C H, Cellular automata simulation for mixed manual and automated control traffic[J]. Mathematical and Computer Modelling, 2010, 51(7/8):1000- 1007.
  • 7HANSEN C, HTTEBRANFUKER N, WIKENING W, et al, A method to expedite data acquisition for multiple spatial-temporal analyses of tissue per,fusion by contrast-enhanced ultrasound [J].IEEE Transactions on Ultrasonics Ferroelectrics Frequency Control,2009,56(3) :507- 519.
  • 8SUN T D, WANG J F. A traffic cellular automata model based on road network grids and its spatial and temporal resolution's influences on simulation [J].Simulation Modelling Practice and Theory, 2007, 15(7) :864-878.
  • 9SU F H, YAO L K. Fractal cellular automata model and simulation[C]// International Conference on Computational Intelligence and Software Engineering, December 11- 13, 2009, Wuhan, China. [s. l.]:IEEE, 2009 : 1 -4.
  • 10YANG X, YUAN J, ZHANG T, et al. Application of uncertainty reasoning based on cloud theory in spatial load forecasting [J].Intelligent Control and Automation,2006(2) : 21-23.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部