摘要
针对常规的141型层板,提出了一种增加50%数量扰流柱的设计,即161型层板.采用实验和数值模拟相结合的办法研究了两种类型层板在流阻和换热方面的差别.换热实验部分采用了辐射式加热设备,测量了层板上下表面平均壁温,以及冷气进、出口截面间的焓差,得到了相应进气雷诺数下的层板体积换热努塞尔数.发现161模型流阻降低20%,换热增强5%.对一些实验工况,采用三维计算流体力学程序进行了流-固耦合传热数值模拟,所得结果在趋势上与实验一致,在数值上,流阻和换热与实验结果分别相差5%和30%.利用数值模拟结果分析并比较了两种模型在流场和表面对流换热系数分布方面的细节差别.
A new form of porous laminated plate (PLP) , model 161, was put forth, which had 50% pin-fin quantity increasing compared with its conventional counterpart, model 141. The 2 models were studied on their flow resistance and heat transfer characteristics by experiment and numerical simulation. A thermal radiation heating facility was employed to maintain the heat flux on the PLP upper external surface, and the actual heating rate was calculated by the enthalpy difference between the inlet and outlet of the coolant. The external surface temperatures were arithmetically averaged. It was found that the model 161 had 20% less flow resistance and 5% more heat transfer than the model 141. The numerical simulation results were in good agreement with the experiment for the flow resistance. However, the discrepancy for the heat transfer was significant and a maximum deviation of 30% in Nusselt number existed, although the variation patterns were quite the same.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2008年第5期546-550,共5页
Journal of Beijing University of Aeronautics and Astronautics
关键词
航空航天推进系统
层板
扰流柱
流阻
换热
aerospace propulsion system
porous laminated plate
pin-fin
flow resistance
heat transfer