期刊文献+

基于各点异性理论的基础矩阵鲁棒估计

Robust estimation on fundamental matrix based on heteroscedastic theory
下载PDF
导出
摘要 针对基础矩阵常用算法对噪声过于敏感、抗干扰能力差等缺点,基于误差与变量相关(Errors-in-Variables,EIV)模型提出1种新的鲁棒性基础矩阵估计算法.该算法采用各点异性回归技术,建立EIV模型,依据数据矢量观测集合最优地估计EIV模型参数和数据矢量真值集合.实验结果表明,在存在较大噪声干扰的条件下,此算法仍能较为准确地估计基础矩阵,具有良好的鲁棒性和较快的运算速度. With the disadvantages of high sensitivity to noise and poor anti-jamming capability in many common fundamental matrix algorithms, a new algorithm is proposed based on EIV(Errors-in-Variables) model. In the algorithm, the heteroscedastic regression technique is adopted, the EIV model is established, and the optimal parameters of EIV model and truth-value set of data vectors are estimated according to the observation set of data vectors. The experiments show that the algorithm can estimate fundamental matrix robustly and precisely even if there is great noise.
作者 曹芳
出处 《计算机辅助工程》 2008年第2期57-60,共4页 Computer Aided Engineering
基金 上海高校选拔培养优秀青年教师科研专项基金(032747)
关键词 计算机视觉 对极几何 基础矩阵 各点异性理论 computer vision epipolar geometry fundamental matrix heteroscedastic theory
  • 相关文献

参考文献7

  • 1HARTLEY R I. In defense of the eight-point algorithm[J]. IEEE Trans on PAMI, 1997, 19(6) : 580-593.
  • 2ZHANG Z, LOOP C. Estimating the fundamental matrix by transforming image points in projective space[ J]. Comput Vision Image Understanding, 2001, 82(2): 174-180.
  • 3LEEDAN Y, MEER P. Heteroscedastic regression in computer vision: problems with bilinear constraint[ J]. Int J Comput Vision, 2000, 37 (2) : 127-150.
  • 4LIU Hailong, DING Xiaoqing. Improve handwritten character recognition performance by heteroscedastic linear discriminant analysis[ C]// Proc 18th International Conference on Pattern Recognition (ICPR06). Hong Kong: IEEE, 2006: 880-883.
  • 5UEKI K, HAYASHIDA T, KOBAYASHI T. Two-dimensional heteroscedastic linear discriminant analysis for age-group classification[ C ]// Proc 18th International Conference on Pattern Recognition (ICPR06). Hong Kong: IEEE, 2006: 585-588.
  • 6MATEI B C, MEER P. Estimation of nonlinear Errors-in-Variables models for computer vision applications[ J]. IEEE Trans on Pattern Anal & Machine Intelligence, 2006, 28(10) : 1 537-1 552.
  • 7MATEI B C, MEER P. A general method for Errors-in-Variables problems in computer vision[ C]//Proc IEEE Conference on Computer Vision & Pattern Recognition. Hilton Head Island, SC: IEEE, 2000, 2: 18-25.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部