摘要
利用向量组的Gram矩阵和向量的坐标矩阵对有限维欧氏空间中子空间的正交性给出了矩阵判定条件,对子空间的正交补及向量在子空间上的内射影给出了矩阵表示.获得了一些简捷有用的结果。
In this paper, some decision theorems are suggested about the matrix orthogonal problem on the subspace of the finite dimensional Euclidan subspace. In addition, some concise results are obtained by matrix representation of the orthogonal complement and injection of vectors on the subspace.
出处
《山东农业大学学报(自然科学版)》
CSCD
北大核心
2008年第2期318-320,共3页
Journal of Shandong Agricultural University:Natural Science Edition
关键词
内积
正交
子空间
内射影
矩阵
Sinner productorthogonal
orthogonal
subspace
matrix.