摘要
设k≥2是一个正整数,若G是顶点数n≥8k-12的均衡二分图且是(n/4+1)-临界的,则对G的任一给定的哈密顿圈C,G都有一个[k,k+1]-因子包含C.该结论改进了现有的一些有关哈密顿[k,k+1]-因子存在性的结果.
Let k≥2 be a positive integer, if G is a balanced bipartite graph with vertex number n≥8k - 12 and (n/4 + 1 ) - critical, then for any given Hamihonian cycle C, G has a [ k, k + 1 ] - factor containing C. This result is an improvement for some results about the existence of Hamiltonian [ k, k + 1 ] - factor.
出处
《沈阳理工大学学报》
CAS
2008年第2期73-75,共3页
Journal of Shenyang Ligong University