期刊文献+

一种利用凸包思想顾及障碍物的聚类分析 被引量:2

A Clustering Method Considering Obstacle on Convex Hulls
下载PDF
导出
摘要 提出了利用凸包思想求取障碍距离的方法,并对该方法进行了理论与实践上的探讨。然后以所求得的障碍距离为依据,利用改进后的k-中心点法进行实验。实验表明,其结果不仅可以得到两点之间的障碍距离与障碍路径,而且可以实现顾及障碍物聚类的要求。最后对实验结果做出了总结与展望。 The clustering analysis is an important way to capture information in data mining. The method of calculating obstacle distance was brought forward based on the principle of convex hulls in this paper, and was discussed theoretically and practically. Then according to the obstacle distance, the experiment by κ-medoids algorithm was improved. The result of the experiment showed not only the obstacle distance and route between two points, but also filling the request of clustering considering obstacle. Finally, the sum-up and prospect was carried out according to the result of the experiment that was done by this method.
出处 《测绘科学技术学报》 北大核心 2008年第2期145-148,共4页 Journal of Geomatics Science and Technology
关键词 聚类分析 凸包 障碍距离 κ-中心点法 clustering analysis convex hull obstacle distance κ-medoids algorithm
  • 相关文献

参考文献6

二级参考文献48

  • 1吴中海,叶澄清,潘云鹤.一个改进的简单多边形凸包算法[J].计算机辅助设计与图形学学报,1997,9(1):9-13. 被引量:21
  • 2王家耀 邹建华.地图制图数据处理的模型方法[M].北京:解放军出版社,1991..
  • 3Ujjwal M,Sanghamitra B.Genetic Algorithm Based Clustering Technique[J].Patten Recognition,2000,33(9):1455.
  • 4Huang Z.Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values[J].Data Mining and Knowledge Discovery,1998,2(3):283.
  • 5范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 6王诗林,孙晓东.数据结构、算法与应用(C++)[M].北京:机械工业出版社,2000:122—124.
  • 7Richard J.Roiger and Michael W.Geatz.数据挖掘教程[M].北京:清华大学出版社,2003.
  • 8Jiawei Han and Micheline Kamber.Data Mining:Concepts and Techniques[M].Simon Fraser University,2000.
  • 9闪四清.数据挖掘[M].北京:清华大学出版社,2004.
  • 10Guha S,Rastogi R,Shim K.CURE:An Efficient Clustering Algorithm for Large Databases[C].Seattle:Proceedings of the ACM SIGMOD Conference,1998.73-84.

共引文献259

同被引文献34

  • 1孙宇清,赵锐,姚青,史斌,刘佳.一种基于网格的障碍约束下空间聚类算法[J].山东大学学报(工学版),2006,36(3):86-90. 被引量:6
  • 2WANG X,GU W,ZIEBELIN D,et al.An Ontology-Based Framework for Geospatial Clustering[J].International Journal of Geographical Information Science,2010,24(11):1601-1630.
  • 3TUNG A K H,HOU J,HAN J.Spatial Clustering in the Presence of Obstacles[J].Data Engineering,2001,1:368-375.
  • 4ESTIVILL-CASTRO V,LEE I.Autoclust+:Automatic Clustering of Point-Data Sets in the Presence of Obstacles[J].Lecture Notes in Computer Science,2001,2007:133-146.
  • 5WANG X,ROSTOKER C,HAMILTON H J.A Density-Based Spatial Clustering for Physical Constraints[J].Journal of Intelligent Information Systems,2012,38(1):269-297.
  • 6WANG X,HAMILTON H J.DBRS:A Density-Based Spatial Clustering Method with Random Sampling[J].Lecture Notes in Computer Science,2003,2637:563.-575.
  • 7DUHAN N,SHARMA A K.DBCCOM:Density Based Clustering with Constraints and Obstacle Modeling[J].Contemporary Computing,2011,168:212-228.
  • 8PARK S H,LEE J H,KIM D H.Spatial Clustering Based On Moving Distance in the Presence of Obstacles[J].Lecture Notes in Computer Science,2007,4443:1024-1027.
  • 9王海军,关兴良,夏文芳.顾及障碍空间的城镇土地定级方法研究[J].武汉大学学报(信息科学版),2008,33(1):97-100. 被引量:7
  • 10许丹奇,王明举,杨宇行,陈雄.利用最短路径算法结合GIS解决土地定级障碍物问题的研究[J].安徽农业科学,2008,36(1):50-51. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部