期刊文献+

非高斯噪声下Kalman滤波熵理论算法研究 被引量:2

Kalman Filter Algorithm under Non-Guassian Noises Using Entropy Theory
下载PDF
导出
摘要 从一个新的角度结合具体的算法讲述了Kalman滤波器的原理,并对噪声为非高斯情况下结合熵的理论提出了假设,解决了噪声为非高斯情形下的滤波器设计的瓶颈。传统的Kalman滤波器是在噪声为高斯的情形下得出的最优滤波估计,但是现实生活中大多数噪声却是未知的、不确定性并且非高斯的。为了清楚说明熵原理应用于非高斯滤波器的设计结果,运用了数学统计的方法,对比滤波效果,说明了其可行性,证明了这种方法更适应于对噪声情况未知、参数不明确的情况,为研究广义噪声的随机系统提出了一种新的通用的解决途径。 Describes the principle of the Kalman filter from a new perspective, where a specified algorithm has been developed on the assumption that the entropy theory could be used for the design of the Kalman filter under non - Guassian noises. Traditional Kalman filter has got the optimal filter estimate under Guassian noises without thinking that there are always some unknown, uncertain even no - Guassian noises in reality. In order to clarify the experiment resuk using the entropy theory for non - Guassian filter design, the mathematical statistics are applied in the paper so as to illustrate the filtering effects for the explanation of its feasibility. It has also been shown that the proposed filtering even fits for unknown possibility or ambiguity parameter of noises in Kalman filter design. Also provides a new and universal way for studying the generalized noises of stochastic systems.
出处 《计算机技术与发展》 2008年第6期40-42,46,共4页 Computer Technology and Development
基金 国家自然科学基金项目(60472065)
关键词 KALMAN滤波器 滤波 概率密度 Kalman filter noises entropy probability
  • 相关文献

参考文献5

二级参考文献6

  • 1陆如华,何于班.卡尔曼滤波方法在天气预报中的应用[J].气象,1994,20(9):41-43. 被引量:52
  • 2熊洪允 曾绍标 毛云英 编著.应川数学丛础[M].火沣:天津大学出版社,1996.190-220.
  • 3Moustakides G V. Correcting the instability due to finite precision of the fast Kalman identification algorithms. Signal Processing.1989, 18(1): 33 - 42.
  • 4Yaakov Bar-Shalom, Multitarget-multisensor tracking and fusion.1997 IEEE National Radar Conference, Syracuse, NY, 1997:180- 192.
  • 5李贤琅,第二次全国概率统计天气预报会议文集,1986年
  • 6杨春玲,刘国岁,倪晋麟.基于转换坐标卡尔曼滤波算法的雷达目标跟踪[J].现代雷达,1998,20(5):48-54. 被引量:16

共引文献106

同被引文献79

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部