期刊文献+

基于粒子群优化算法的非线性系统模型参数估计 被引量:5

A Method of Parameter Estimation in a Nonlinear System Model Based on Particle Swarm Optimization
下载PDF
导出
摘要 非线性模型的参数估计是较为困难的寻优问题,经典方法常会陷入局部极值。由于粒子群算法是一种有效的解决优化问题的群集智能算法,它的突出特点是操作简便、容易实现且全局搜索功能较强,故将粒子群优化算法用于非线性系统模型参数估计,并通过对3种典型的非线性模型的参数估计进行了验证。实验结果表明:粒子群优化算法参数估计精度高,是一种有效的参数估计方法。 Estimation of nonlinear model parameters is a tough searching problem. Unfortunately, the traditional approaches easily get stuck in a local minimum. Considering that the particle swarm optimization (PSO) algorithm is quite simple and easy to implement, it was used to estimate the nonlinear model parameters in this paper. Here three model of nonlinear systems were estimated by PSO algorithm and simulations demonstrated that PSO algorithm is an effective way for nonlinear system parameter estimation with global optimal.
出处 《计算机技术与发展》 2008年第6期57-59,共3页 Computer Technology and Development
基金 国家自然科学基金资助项目(70271050)
关键词 粒子群优化 非线性系统 参数估计 particle swarm optimization nonlinear system parameter estimation
  • 相关文献

参考文献5

  • 1Giannakis G B, Serpedin E. A bibliography on nonlinear system identification[ J ]. Signal Processing, 2001,81 (3) : 533 - 580.
  • 2Eberhart R C. Kennedy J. A new optimizer using particle swarm theory[C].In: Proc. the sixth international symposium on Micro Machine and Human Science. Nagoya, Japan: [s.n. ], 1995:39-43.
  • 3Kennedy J,Eberhart R C,Shi Y. Swarm inteUigence[M]. San Francisco. Morgan Kaufmann Publishers, 2001.
  • 4Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources[ C].in: Proc. Congress on Evolutionary Computation. Piseataway, NJ : [ s. n. ], 2001:81 - 86.
  • 5姜波,汪秉文.基于遗传算法的非线性系统模型参数估计[J].控制理论与应用,2000,17(1):150-152. 被引量:61

二级参考文献7

共引文献60

同被引文献39

  • 1胡健,吕一河.土壤水分动态随机模型研究进展[J].地理科学进展,2015,34(3):389-400. 被引量:8
  • 2袁晓辉,王乘,张勇传,袁艳斌.粒子群优化算法在电力系统中的应用[J].电网技术,2004,28(19):14-19. 被引量:220
  • 3俞欢军,许宁,张丽平,胡上序.混合粒子群优化算法研究[J].信息与控制,2005,34(4):500-504. 被引量:18
  • 4宋秉海.旱地地膜玉米“贫水富集”种植模式研究[J].中国生态农业学报,2006,14(3):93-95. 被引量:17
  • 5Giannakis G B, Serpedin E. A bibliography on nonlinear system identification. Signal Processing, 2001 ;81 (3) :533-580.
  • 6Abido M A. Optimal power flow using particle swarm optimization [J]. Electrical Power and Energy System,2002, 24(7) :563 - 571.
  • 7S. M. Benchluch,J. H. Chow. A trajectory sensitivity method for the identification of nonlinear excitation system models [ J]. IEEE Transactions on Power Systems, 1993,8 (2) : 159 - 164.
  • 8an A. Hiskens,Jassim Alseddiqui. Sensitivity, approximation, and uncertainty in power system dynamic simulation [ J]. IEEE Transactions on Power Systems,2006,21 (4) :1808 - 1820.
  • 9Xie X F,Zhang W J, Yang Z L.Social cognitive optimization for nonlinear programming problems[C]//Int Conf on Machine Learning and Cybernetics, Beijing, China, 2002: 779-783.
  • 10Xie X F,Zhang W J.Solving engineering design problems by social cognitive optimization[C]//Genetic and Evolutionary Computation Conference, 2004: 261-262.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部