期刊文献+

基于支持向量机的入侵检测研究 被引量:14

Intrusion Detection Research Based on Support Vector Machine
下载PDF
导出
摘要 根据入侵检测和支持向量机的特点,提出基于最小二乘支持向量机异常检测方法,并建立基于支持向量机入侵检测的模型,对网络数据进行采集,提取特征,进行分类,分辨正常的数据和异常的数据。并在KDD CUP'99标准入侵检测数据集上进行实验,选取data_10_percent子集,把该数据集中的41个属性作为特征,将该子集最后一个属性label属性为:back,ipsweep,neptun,ports-weep和normal各200个数据进行测试。实证表明:该方法能获得较高检测率和较低误警率。 According to the traits of intrusion detection and support vector machines, an abnormal detection method was presented based on the least-squares Support Vector Machine, and an intrusion detection model was built based on support vector machine, which was used for the network data collection, feature extraction, data classification and distinguishing between normal data and abnormal data. A test was conducted on the intrusion detection data of KDD CUP99 standards by selecting the subset of data_10_percent ; the 41 attributes of this subset were taken as the characteristics, and the final attribute of this subset was labeled as back, ipsweep, neptun, portsweep and normal. 200 data of each kind was respectively tested. The result shows that this method can obtain a higher detection rate and a lower false warning rate.
出处 《中国安全科学学报》 CAS CSCD 2008年第4期126-130,共5页 China Safety Science Journal
关键词 支持向量机(SVM) 入侵检测系统(IDS) 网络安全 异常检测 特征抽取 support vector machine(SVM) intrusion detection system(IDS) network security abnormal detection feature extraction.
  • 相关文献

参考文献10

二级参考文献50

  • 1撖书良,蒋嶷川,张世永.基于神经网络的高效智能入侵检测系统[J].计算机工程,2004,30(10):69-70. 被引量:11
  • 2马锐,刘玉树,杜彦辉.基于ART2神经网络的入侵检测方法[J].北京理工大学学报,2004,24(8):701-704. 被引量:6
  • 3..http://www. 11. mit. edu/IST/ideval/data/1999/.,.
  • 4[1]Cannady J, Mahaffey J. The Application of Artificial Neural Networks to Misuse Detection: Initial Results. Proceedings of First International Workshop on the Recent Advances in Intrusion Detection, Louvain-laNeuve, Belgium, 1998-09-14
  • 5[3]Lippmann R P,Cunningham R K.Improving Intrusion Detection Performance Using Keyword Selection and Neural Networks. Computer Networks,(2000),34:597-603
  • 6[4]Lippmann R P.An Introduction to Computing with Neural Nets,IEEE ASSP Magazine, 1987:4-22
  • 7[1]Kumar S. Classification and detection of computer intrusions [D]. West Lafayetle: School of Liberal Arts Purdue University, 1995.
  • 8[2]Ghosh A K, Schwartzbard A. A study in using neural networks for anomaly and misuse detection[Z]. The 8th USENIX Security Symposium, Washington,1999.
  • 9[4]Snapp S. DIDS (distributed intrusion detection system ) - Motivation, architecture and early prototype [Z]. The 14th National Computer Security Conference, Washington, 1991.
  • 10[5]Cannady J. Artificial neural networks for misuse detection[Z]. The 21st National Information Systems Security Conference, Arlington, 1998.

共引文献2402

同被引文献101

引证文献14

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部