期刊文献+

自组织竞争人工神经网络在砂岩型铀矿测井数据解释中的应用 被引量:3

Application of self~organizing competition artificial neural network to logging data explanation of sandstone~hosted uranium deposits
下载PDF
导出
摘要 详细介绍了自组织竞争人工神经网络模型结构、原理和钻孔岩性自动识别过程,给出了神经网络模型在钻孔岩性自动识别过程中的有效性实例。自组织竞争人工神经网络具有自组织能力、自适应能力和较高的容错能力;与BP算法相比较,计算量小,收敛速度快,且不需要已知的先验信息而自动确定分类类别。钻孔岩性识别结果与岩心地质编录的对比试验表明,在砂岩型铀矿测井数据的解释中,应用自组织竞争人工方法可较好地完成钻孔岩性自动分类。 The article describes the model construction of self-organizing competition artificial neural network, its principle and automatic recognition process of borehole lithology in detail, and then proves the efficiency of the neural network model for automatically recognizing the borehole lithology with some cases. The self-organizing competition artificial neural network has the ability of self- organization, self-adjustment and high permitting errors. Compared with the BP algorithm, it takes less calculation quantity and more rapidly converges. Furthermore, it can automatically confirm the category without the known sample information. Trial results based on contrasting the identification results of the borehole lithology with geological documentations, indicate that self-organizing artificial neural network can be well applied to automatically performing the category of borehole lithology, during the logging data explanation of sandstone-hosted uranium deposits.
机构地区 核工业 核工业
出处 《世界核地质科学》 CAS 2008年第2期114-118,共5页 World Nuclear Geoscience
关键词 砂岩型铀矿 自组织竞争神经网络 测井数据解释 岩性识别 sandstone-hosted uranium deposits self-organizing competition neural network logging data explanation lithologic identification
  • 相关文献

参考文献3

  • 1倪师军,曹志敏,张成江,唐建武,滕彦国.成矿流体活动信息的三个示踪标志研究[J].地球学报(中国地质科学院院报),1998,19(2):166-169. 被引量:27
  • 2[4]Simon Haykln.Neural networks:A comprehensive foundation[M].北京:清华大学出版社,2001.
  • 3焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1992..

二级参考文献3

共引文献163

同被引文献64

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部