期刊文献+

不同剂量^60Co^γ射线照射正常人淋巴母细胞后的差异表达基因分析

Different gene expression of normal lymphoblastoid cells which exposure to different dose of ^60Co^γ-ray
原文传递
导出
摘要 目的研究不同剂量γ射线照射正常人淋巴母细胞AHH-1的基因差异表达,探讨生物学效应的差异。方法^60Co^γ射线照射AHH-1,用人cDNA芯片检测照射后8h AHH-1细胞和正常细胞mRNA表达,将芯片分析数据进行聚类分析、判别比较,筛选差异表达基因。结果数据分析筛选后,仅与2.0 Gy照射关系密切的差异表达基因23个;仅在0.5 Gy照射中变化的基凶5个;2.0Gy与0.5Gy两组比较变化一致的基因有5个。结论不同剂量γ射线照射AHH-1诱导明显的基因差异表达,其中部分基因表达的改变可能是辐射生物效应发生的关键因素。 Objective To study on the gene expression of normal lymphoblastoid cells(AHH-l) which exposure to difference dose of ^60Co^γ-ray, analyses the essential different biological effect. Methods Human AHH-I normal line was irradiated by ^60Co^γ-rays. Used human cDNA microarray to develop the transcriptional levels of the genes by hybridizing the mRNA of cells 8 h after exposured in different dose and the control cells. Cluster analysis, discrimination and bolting were used to filter the effective genes of differential expression. Results The results of data analysis showed 23 genes of differential expression closely related to biological effect of 2.0 Gy radiation, 5 genes express changed only by 0.5 Gy radiation, 5 genes express apparently both in 2.0 Gy and 0.5 Gy radiation. Conclusion The different dose γ-rays radiation-induced significant changes in gene expression, such as PAPLN, TP53INPI, PTENP1, FOS and TPR seem to be some important components of cellular radioresponse.
出处 《国际放射医学核医学杂志》 2008年第2期101-105,共5页 International Journal of Radiation Medicine and Nuclear Medicine
基金 基金项目:国家自然科学基金资助项目(10575130)
关键词 剂量效应关系 辐射 基因表达谱 淋巴母细胞 Dose-response relationship, radiation Gene expression profiling Lymphoblastoid eells
  • 相关文献

参考文献15

  • 1Yang K, Cai Z, Li J, et al. A stable gene selection in microarray data analysis[J]. BMC Bioinfomatics, 2006, 7: 228.
  • 2Albanesea J, Martensa K, Karkanitesa LV, et al. Multivariate analysis of low-dose radiation-assoclated changes in cytokine gene expression profiles using microarray technology[J]. Exp Hematolo, 2007, 35(4Suppl1): 47-54.
  • 3Chaudhry MA. Bystander effect: Biologlcal endpoints and microarray analysis[J]. Mutat Res, 2006, 597(1-2): 98-112.
  • 4Lindsay KJ, Coates PJ, Lorimore SA, et al. The genetic basis of tissue responses to ionizing radiation [J]. Br J Radiol, 2007, 80 (Spec 1): S2-S6.
  • 5Kramerova IA, Kawaguchi N, Fessler LI, et al. Papilin in development:a pericellular protein with a homology to the ADAMTS metalloproteinases[J]. Development, 2000, 127(24): 5475-5485.
  • 6Okamura S, Arakawa H, Tanaka T, et al. p53-inducible gene, regulates p53-dependent apoptosis [J]. Mol Cell, 2001, 8 (1): 85-94.
  • 7Tomasini R, Samir AA, Carrier A, et al. TP53INPIs and homeodomain-interaeting protein kinase-2(HIPK2) are partners in regulating p53 activity [J]. J Biol Chem, 2003, 278 (39): 37722- 37729.
  • 8Dahia PL, FitzGerald MG, Zhang X, et al. A highly conserved processed PTEN pseudogene is located on chromosome band 9p21 [J]. Oncogene, 1998, 16(18): 2403-2406.
  • 9Greeo A, Pierotti MA, Bongarzone I, at el. TRK-TI is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary, thyroid carcinomas[J]. Oncogene. 1992, 7(2): 237-242.
  • 10Hase ME, Cordes VC. Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex[J]. Mol Biol Cell, 2003, 14(5): 1923-1940.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部