摘要
研究了一类含连续分布滞量和阻尼项的非线性双曲型偏微分方程组运用黎卡提变换获得了该方程组在两类边值条件下解振动的充分条件.
We study the oscillation of the solutions of systems of hyperbolic partial differential equations with continuous delay argument and damped terms, Sufficient conditions for the oscillation of each solution of the equations are obtained under two kinds of different boundary value conditions.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第11期178-183,共6页
Mathematics in Practice and Theory
基金
湖南省自然科学基金资助项目(05jj40008)
湖南省教育厅科研计划项目(07C164)
关键词
双曲型偏微分方程组
连续分布滞量
阻尼项
振动性
systems of hyperbolic partial differential equations
continuous delay argument
damped terms
oscillation