期刊文献+

基于稀疏化LS-SVM的漏磁缺陷三维轮廓重构 被引量:4

3-D Defect Profile Reconstruction from Magnetic Flux Leakage Signals Based on Sparsity LS-SVM
下载PDF
导出
摘要 漏磁缺陷轮廓重构是指由检测到的漏磁信号重构缺陷轮廓及参数,是实现漏磁反演的关键。将最小二乘支持向量机(LS-SVM)应用于漏磁缺陷的三维轮廓重构中,并对LS-SVM采取了稀疏化处理,将漏磁信号磁通密度法向分量Bx作为支持向量机网络的输入,缺陷的几何参数长度、宽度、深度作为输出,由实验测量数据和三维有限元仿真计算得到的仿真数据组建样本库。建立了由缺陷的漏磁信号到缺陷三维轮廓图的映射关系,实现了缺陷三维轮廓的重构。实验结果表明:该方法具有很高的精度和很好的泛化能力,同时对噪声也有一定容忍能力。 The reconstruction of magnetic flux leakage (MFL) defect profiles means the reconstruction of defect profiles and parameters from MFL inspection signals. It is the key for the inversion of MFL inspection signals. 3-D defect reconstruction from MFL signals was studied by the least squares support vector machine (LS-SVM), on which the pruning algorithm imposes the sparseness. In the network training, the normal component of magnetic flux density Bx was chosen as the input data of SVM nets and the defect geometric parameters: length, width and depth as the output data. The sample data library was constructed by the experimental data and simulated data obtained by 3-D finite element method. A mapping from MFL signals to 3-D profiles of defects was established, and inversion of 3-D profiles of defects from magnetic flux leakage inspection signals was achieved. Experimental results show that the LS-SVM has high precision, a good generalization ability and the capability of tolerating noise.
出处 《兵工学报》 EI CAS CSCD 北大核心 2008年第5期592-595,共4页 Acta Armamentarii
基金 国家自然科学基金资助项目(50175109) 河北省自然科学基金资助项目(E2008001258) 军械工程学院科学研究基金资助项目(YJJXM07037)
关键词 材料检测与分析技术 漏磁检测 最小二乘支持向量机 稀疏化 三维轮廓重构 material examination and analysis magnetic flux leakage inspection least squares support vector machine sparsity 3-D profile reconstruction
  • 相关文献

参考文献10

  • 1王长龙 ,陈鹏 ,刘美全 ,傅君眉 ,张飞龙 .漏磁信号特征提取及检测研究[J].军械工程学院学报,2004,16(4):1-4. 被引量:15
  • 2Hauelsen J, Unger R, Beuker T, et al. Evaluation of inverse algorithms in the analysis of magnetic flux leakage data [J]. IEEE Transactions On Magnetics, 2002, 38(3) : 1481 - 1488.
  • 3王长龙,徐章遂,傅君眉,陈鹏.基于小波神经网络的火炮裂纹形状重构[J].兵工学报,2005,26(3):379-382. 被引量:10
  • 4Ramuhalli P, Upda L, Upda S. Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation[J]. Journal of Applied Physics, 2003, 93(10) : 8274 - 8275.
  • 5韩文花,阙沛文.基于遗传优化算法的二维漏磁缺陷重构[J].中国石油大学学报(自然科学版),2006,30(1):138-141. 被引量:8
  • 6Suykens J A K. Nonlinear and support vector machine [ C]. IEEE Instrumentation and Measurement Technology Conference C, Budapest, Hungary, 2001: 1-23.
  • 7Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J ]. Neural Processing Letters, 1999, 9 (3) : 293 - 300.
  • 8SONG Xiao-mu, FAN Guo-liang, Rao Mahesh. Automatic CRP mapping using nonparametric machine learning approaches [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (4) :888 - 897.
  • 9Mao K Z. Feature subset selection for support vector machines through discriminative function pruning analysis [ J ]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2004, 33(1): 60-67.
  • 10纪凤珠,王长龙,陈正阁,左宪章.基于三维有限元法的漏磁场分析[J].兵工学报,2007,28(7):876-879. 被引量:14

二级参考文献29

  • 1王长龙,徐章遂,傅君眉,陈鹏.基于小波神经网络的火炮裂纹形状重构[J].兵工学报,2005,26(3):379-382. 被引量:10
  • 2RAMUHALLI P, UDPA L, UDPA S S. Electromagnetic NDE signal inversion by function-approximation neural networks [J]. IEEE Transactions on Magnetics,2002,38(6):3 633-3 642.
  • 3LIM J. Data fusion for NDE signal characterization[D].Iowa: Iowa State University, 2001.
  • 4HWANG K, MANDAYAM S, UDPA S S, et al. Characterization of gas pipeline inspection signals using wavelet basis function neural networks[J]. NUF & E International, 2000,33(8):531-545.
  • 5RAMUHALLI P, UDPA L, UDPA S S. Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation [J]. Journal of Applied Physics, 2003,93 (103): 8 274-8 276.
  • 6GOLDBERG D E. Genetic algorithms in search, optimzation & machine learning[M]. Massachusetts: Addison-Wesley, 1989.
  • 7SRINIVAS M, PATNAIK L M. Genetic algorithms: a survey[J]. Computer, 1994,27(6): 17-26.
  • 8HAYKIN S. Neural networks: a comprehenaive foundation[M]. New Jersey: Prentlce-hall, 2001.
  • 9CHEN S, COWAN C F N, GRANT P M. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks,1991,2(2):302-309.
  • 10Zhang Qinghua, Benveniste A. Wavelet networks[ J ]. IEEE Transactions NN, 1992, 3(6) : 889 - 898.

共引文献38

同被引文献27

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部