期刊文献+

酿酒酵母对数生长后期代谢重构的全基因组表达谱芯片分析 被引量:4

Global Expression Profiling of Saccharomyces cerevisiae:Metabolic Remodeling in Post-log Phase
下载PDF
导出
摘要 为了探讨酵母进入对数生长后期以后酒精生产速度降低的原因,我们利用酵母表达谱芯片技术对酿酒酵母细胞从对数生长中期进入对数生长后期时的全基因组表达谱进行了分析,发现酵母在对数生长中期的表达谱非常稳定,而一旦进入对数生长后期,则出现明显的代谢重构现象。许多氨基酸合成和代谢相关的基因、离子转移以及与能量的生成和储存等功能相关的基因出现了不同程度的上调;而许多涉及酵母转座和DNA重组的基因则表达下调;一些中心代谢途径也发生了代谢重构,包括:琥珀酸和α-酮戊二酸生成途径基因的一致上调,都与氨基酸合成和代谢相关基因表达的结果相吻合。结果表明:由于氨基酸合成的需求量增加,进入对数生长后期酵母的代谢转向TCA循环和乙醛酸循环,导致酒精的生产速率降低。 For the purpose of revealing the mechanism of the reduction of yeasts ethanol production rate after entrance of post-log phase, we used microarray to study expression profiles of the yeast Saccharomyces cerevisiae during the transition from mid-log growth phase to post-log growth. The results demonstrate that the global pattern of gene expression is very stable during the mid-log phase. However, a dramatic metabolic remodeling was found when the yeast entries post-log phase, during which many of amino acid synthesis and metabolism related genes are up-regulated, moreover, ion transport, energy generation and storage related genes are also up regulated during this phase, while a large number of genes involved in transposition and DNA recombination are repressed. Central metabolic pathways also engage in metabolic remodeling, within which the genes involved in succinate and α-ketoglutarate synthesis pathways are up regulated, accordance with those of amino acid synthesis and metabolism. These results demonstrate that the increasing demand for amino acids in post-log phase lead to a metabolic transition into TCA cycle and glyoxylate cycle, which subsequently reduce the ethanol production rate. This suggests a global insight into the process of yeast ethanol fermentation.
出处 《生物工程学报》 CAS CSCD 北大核心 2008年第6期962-967,共6页 Chinese Journal of Biotechnology
关键词 酿酒酵母 对数生长后期 表达谱 代谢重构 Saccharomyces cerevisiae, post-log phase, expression profiling, metabolic remodeling
  • 相关文献

参考文献12

  • 1Jones AM, Thomas KC, Ingledew WM. Ethanolic fermentation of blackstrap molasses and sugarcane juice using very high gravity technology. Journal of Agricultural and Food Chemistry, 1994, 42(5): 1242-1246.
  • 2钟娅玲,孙勇,沈静.A82-1絮凝酵母在糖蜜酒精发酵中的工业应用报告[J].甘蔗糖业,1998,27(6):42-45. 被引量:1
  • 3汤岳琴,钟娅玲,沈静,杨红.耐高温絮凝酵母HK-3糖蜜原料发酵生产酒精特性[J].食品与发酵工业,1997,23(5):16-20. 被引量:1
  • 4Elliott B, Futcher B. Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast, 1993, 9: 33-42.
  • 5Brauer MJ, Saldanha AJ, Dolinski K, et al. Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Molcular Biology of the Cell, 2005, 16: 2503-2517.
  • 6Yang YH, Dudoit S, Luu P, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 2002, 30(4): e15.
  • 7Delforge J, Messenguy F, Wiame JM. The Regulation of Arginine Biosynthesis in Saccharomyces cerevisiae. The Specificity of argR Mutations and the General Control of Amino-Acid Biosynthesis. 1975, European Journal of Biochemistry, 57(1): 231-239.
  • 8Messenguy F, Dubois E. Participation of transcriptional and post-transcriptional regulatory mechanisms in the control of argine metabolism in yeast. 1983, Molecular and General Genetics, 189(1): 148-156.
  • 9DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. 1997, Science, 278: 680-685.
  • 10Drewke C, Ciriacy M. Overexpression, purification and properties of alcohol dehydrogenase Ⅳ from Saccharomyces cerevisiae. 1988, Biochimica Et Biophysica Acta, 950(1): 54-60.

同被引文献50

  • 1敖世洲.酵母酸性磷酸酯酶基因表达与细胞周期活动[J].生命科学,1995,7(4):1-3. 被引量:2
  • 2ROMANOS MA, SCORER CA, et al. Foreign gene expression in yeast: a review [J]. Yeast, 1992, 8 (6) : 423-488.
  • 3LLOYD D, HAYES AJ. Vigour, vitality and viability of microorganisms [J]. FEMS Microbial Lett, 1995, 133 (8) .. 1-7.
  • 4HEATHER H, MARGARITIS A, STEWART R J, et, al. Measurement of brewing yeast viability and vitality: A review of methods [J]. Tech Q Master Brew Assoc Am, 2000, 37 (4) : 409-430.
  • 5Raschke D, Knorr D. Rapid monitoring of cell size, vitality and lipid droplet development in the oleaginous yeast Waltomyces lipofer [J]. J Mierabiol Methods, 2009, 79 (2) : 178-183.
  • 6LYONS A B, PARISH C R. Determination of lymphocyte division by flow cytometry[J]. Immunol Methods, 1994, 171 (1) : 131-137.
  • 7SCHERMERS F H, DUFFUS J H, MACLEOD A M. Studies on yeast es- terase[J]. J. Inst Brew, 1976, 82: 170-174.
  • 8Marielle B, Jean-Yves L. Rapid Assessment of Yeast Viability and Yeast Vitality During Alcoholic Fermentation[J]. J lnst Brew, 2001, 107 (4) : 217-225.
  • 9Leo L Chan, Alexandria Kury, Alisha Wilkinson, et al. Novel image cy- tometric method for detection of physiological and metabolic changes in Saccharomyces cerevisiae[J]. J Ind Mierobiol Biotechnoi, 2012,39 (11) : 1615-1623.
  • 10Laura Bardi, Cristina Crivelli, Mario Marzona. Esterase activity and re- lease of ethyl esters of medium-chain fatty acids by Saccharomyces cerevisiaeduring anaerobic growth[J]. Canadian J Mierobiol, 1998, 44: 1171-1176.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部