期刊文献+

嗜中高温嗜酸古菌Ferroplasma thermophilum的培养条件优化

Optimization of Culture Condition of a Moderately Thermophilic Acidophilic Ferroplasma thermophilum
下载PDF
导出
摘要 在中高温和较低pH条件下,Ferrroplasma spp.是进行硫化矿生物浸出的重要微生物。Ferroplasma spp.为古菌,无细胞壁,对矿浆浓度、搅拌剪切力以及溶液中的重金属离子等敏感,很难得到高密度的纯培养,给大规模的工业应用带来了一定难度。研究了F.thermophilum摇瓶培养时的最佳生长条件,单因素考察结果表明最适培条件为:温度50oC,初始pH0.5,250mL的摇瓶装液量为50mL,无机氮源(NH4)2SO4。通过正交试验确定了FeSO4·7H2O、酵母粉和蛋白胨最适组合为FeSO4·7H2O40g/L,酵母粉0.3g/L,蛋白胨0.2g/L。优化培养后,F.thermophilum浓度达到了6.3×107个/mL,40g/L的FeSO4·7H2O在72h内全部氧化完全。该结果可为该类古菌的扩大培养以及工业应用提供参考。 The extreme microorganisms Ferroplasma spp., play an important role in bioleaching of sulphide ores at low pH value and temperatures around 50℃. Without cell wall, Ferroplasma spp. is sensitive to pulp density, shearing force and heavy metal ions. Thus it is difficult to obtain their high cell density cultures, which limits the large-scale industrial application. In this paper, the optimum culture conditions of Ferroplasma thermophilum were studied by shaking culture. The results showed that the optimum culture conditions are as follows: 50℃, initial pH 0.5, 50 mL working volume in 250 mL shaking-flask, inorganic nitrogen source (NH4)2SO4. The optimum combination of FeSO4.TH2O, yeast extract and peptone was determined by orthogonal experiments, including FeSO4.TH2O 40 g/L, yeast extract 0.3 g/L, peptone 0.2 g/L. Under the optimum culture conditions, the cell density was up to 6.3×107 cell/mL, and the oxidation of 40 g/L ferrous sulfate heptahydrate was finished in less than 72 hours. The results mightprovide information for scale-up of archaeon culture as well as its industrial application.
出处 《生物工程学报》 CAS CSCD 北大核心 2008年第6期1040-1045,共6页 Chinese Journal of Biotechnology
基金 国家重点基础研究项目(973)(No.2004CB619204) 国家自然科学基金(No.40646029) 教育部新世纪优秀人才支持计划(No.NECT-06-0691) 大洋协会课题(No.DYXM-115-02-2-07)资助~~
关键词 生物浸矿 FERROPLASMA 古菌 培养 优化 bioleaching, archaeon, Ferroplasma spp., culture, optimization
  • 相关文献

参考文献20

  • 1Temple KL, Colmer AR. The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. Journal of Bacteriology, 1951, 62(5): 605-611.
  • 2Rawlings DE. Heavy metal mining using microbes. Annual Review of Microbiology, 2002, 56: 65-91.
  • 3Wulf-durand DP, Bryant LJ, Sly LI. PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Applied and Environmental Microbiology, 1997, 63(7): 2944-2948.
  • 4Vasquez M, Espejo RT. Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentration. Applied and Environmental Microbiology, 1997, 63(1): 332-334.
  • 5Olson GJ, Brierley JA, Brierley CL. Bioleaching review part B: Progress in bioleaching: applications of microbial progresses by the minerals industries. Applied and Environmental Microbiology, 2003, 63(3): 249-257.
  • 6Wu CB, Zeng WM, Zhou HB. Bioleaching of chalcopyrite by mixed culture of moderately thermophilic microorganisms Journal of Central South University of Technology, 2007, 14(4): 474-478.
  • 7Okibe N, Gericke M, Hallberg KB. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Applied and Environmental Microbiology, 2003, 69(4): 1936-1943.
  • 8Golyshina OV, Timmis KN. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environment Microbiology, 2005, 7(9): 1277-1288.
  • 9Hawkes RB, Franzmann PD. Ferroplasma cupricumulans sp.nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite heap. Extremophiles, 2006, 10(6): 525-530.
  • 10Okibe N, Gericke M, Hallberg KB, Johnson B. Enumeration and characterization of acidophilic microorganisms isolate from a pilot plant stirred-tank bioleaching operations. Applied and Environmental Microbiology, 2003, 69(4): 1936-1943.

二级参考文献76

  • 1DeLong E F,Wu K Y,Prezelin B B,et al.High abundance of Archaea in Antarctic marine picoplankton[J].Nature,1994,371:695-697.
  • 2Fuhrman J A,McCallum K,Davis A A.Novel major archaebacterial group from marine plankton[J].Nature,1992,356:148-149.
  • 3Hershberger K L.Wide diversity of Crenarchaeota[J].Nature,1996,384:420.
  • 4MacGregor B J,Moser D P,Alm E W,et al.Crenarchaeota in Lake Michigan sediment[J].Applied and Environmental Microbiology,1997,63:1 178-1 181.
  • 5Pearson A,Huang Z,Ingalls A E,et al.Non-marine crenarchaeol in Nevada hot springs[J].Appl Environ Microbiol,2004,70:5 229-5 237.
  • 6Schleper C,Jurgens G,Jonuscheit M.Genomic studies of uncultivated archaea[J].Nat Rev Microbiol,2005,3:479-488.
  • 7Zhang C L,Pearson A,Li Y L,et al.Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution[J].Appl Environ Microbiol,2006,72:4 419-4 422.
  • 8Karner M B,DeLong E F,Karl D M.Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J].Nature,2001,409:507-510.
  • 9Valentine D L,Reeburgh W S.New perspectives on anaerobic methane oxidation[J].Environ Microbiol,2000,2:477-484.
  • 10Zhang C L,Pancost R D,Qian Y,et al.Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico[J].Org Geochem,2003,34:827-834.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部