期刊文献+

扩展型HMM在表情识别中的应用研究

Extended Hidden Markov Model for Recognition of Facial Expression
下载PDF
导出
摘要 根据表情与人脸表情特征关系,提出采用隐马尔可夫模型进行人脸表情识别;又鉴于人脸图像二维特性,提出了更具健壮性、更易处理二维数据的扩展型隐马尔可夫模型.该模型相比伪二维隐马尔可夫模型,简化了复杂度.为提高模型的识别效率,根据敏感度不一,提出多重感兴趣区域替代单一的感兴趣区域.为提高表情子库内样本的聚合度及库间样本离散度,提出相应的改进方案.首先通过人脸检测,实现表情样本采集;然后采用二维离散余弦实现图像频域转化,并结合低频数据生成特征向量;最后采用扩展型隐马尔可夫模型进行表情建模,实现表情训练与识别.实验表明:采用扩展型隐马尔可夫模型可有效识别表情,尤其是优化后的设计方案. The paper introduces an approach of facial expression recognition using Extended Hidden Markov Model (E-HMM) on the basis of the relation between facial expression and facial features. The proposed method can better model 2D-data than 1D-HMM with less computational complexity in comparison with the pseudo 2D-HMM. The proposed method is characterized in using multiple region of interest (multi-ROI) instead of single region and combining both spatial and temporal features with the E-HMM. The method makes use of an optimized set of observation vectors obtained from the 2D-DCT coefficients of the facial region of interest. The E-HMM is trained using segmental K-means algorithm and then used for the facial expression recognition. The experimental results reveal the significant system performance improvement and robustness as well.
出处 《宁波大学学报(理工版)》 CAS 2008年第1期55-61,共7页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 973重大基础研究前期研究专项(2005CCA04400) 国家自然科学基金(NSFC-60672071)
关键词 扩展型隐马尔可夫 人脸特征提取 多重感兴趣区域 样本耦合度 样本离散度 E-HMM facial feature extraction multi-ROI degree of polymerization between frames dispersionbetween subjects
  • 相关文献

参考文献11

  • 1Ekman P, Friesen W. Facial action coding system: investigator's guide[M]. Palo Alto: Consulting Psychologists Press, 1978.
  • 2Ekman P, Friesen W. Constants across cultures in the Face and emotion[J]. Journal of Personality and Social Psychology, 1975, 17:123-129.
  • 3Suwa M, Sugie N, Fujimora K. A preliminary note on pattern recognition of human emotional expression[C]// Proceedings of the 4th International Joint Conference on Pattern Recognition. Japan: Kyoto, 1978:408-410.
  • 4Essa I, Pentland A. Coding, analysis, interpretation and recognition of facial expression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1977, 19(7):757-763.
  • 5Black M, Yacoob Y. Recognizing facial expressions in image sequences using local parameterized models of image motion[J]. Journal of Computer Vision, 1997, 25 (1):23- 48.
  • 6Yacoob Y, Davis L. Recognizing human facial expression from long image sequences using optical flow[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18:636-642.
  • 7Rabiner L. A Tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2):257-286.
  • 8Nefian A, Hayes M. Hidden Markov model for recognition[J]. ICASSP, 1998, 5:2 721-2 724.
  • 9Samaria F. Face recognition using hidden Markov models [D]. Cambridge: University of Cambridge, 1994.
  • 10Otsuka T, Ohya J. Recognizing multiple persons' facial expressions using HMM based on automatic extraction of significant frames from image sequences[C]//IEEE Conf on Image Processing, 1997:546-549.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部