期刊文献+

烷烃在金属有机骨架MOF-5和Cu-BTC中吸附的蒙特卡罗模拟 被引量:5

Monte Carlo simulation for the adsorption of alkanes in metal-organic frameworks MOF-5 and Cu-BTC
下载PDF
导出
摘要 采用蒙特卡罗方法(Monte Carlo,MC)研究烷烃在2种典型的金属有机骨架MOF-5和Cu-BTC(BTC,均苯三甲酸)中的吸附.模拟298 K下烷烃(CH4、C2H6、C3H8、正丁烷、正戊烷)在MOF-5和Cu-BTC中单组分吸附等温线,结果表明:随着压力的增加,烷烃的吸附量变大.在低压部分,吸附量由小到大的顺序是:CH4、C2H6、C3H8、正丁烷、正戊烷;而在高压部分,吸附量由小到大的顺序是:正戊烷、正丁烷、C3H8、C2H6、CH4.分析烷烃在MOF-5和Cu-BTC中的位置分布,得到烷烃在MOF-5和Cu-BTC中填充顺序:在MOF-5中,烷烃首先吸附在金属氧化物团簇Zn4O周围,然后进入孔道中间;在Cu-BTC中,烷烃首先吸附在四面体型的边孔道中,然后进入主孔道中. The adsorption of alkanes in two representative metal-organic frameworks (MOFs) : MOF-5 and Cu-BTC (BTC,benzene-1,3,5-tricarboxylate) had been simulated using Monte Carlo method. The single component adsorption isotherms of alkanes (methane, ethane, propane, n-butane, n-pentane) in MOF-5 and Cu-BTC at 298 K had been simulated. The results indicated that the adsorbed amounts increased with increasing pressure. At low pressures, adsorbed amounts were in the order of methane 〈 ethane 〈 propane 〈 n-butane 〈 n-pentane. While, at high pressures, adsorbed amounts were in the order of n-pentane 〈 n-butane 〈 propane 〈 ethane 〈 methane. The adsorption sites of alkanes in MOF-5 and Cu-BTC were analyzed and the sequences of pore filling in MOF-5 and Cu-BTC were obtained: in MOF-5, alkanes first occupied near metal oxide Zn4O clusters, then occupied the center of the cavities; in Cu-BTC, alkanes first occupied the tetrahedron-shaped side pockets, then occupied the main channels.
作者 王斌 马正飞
出处 《南京工业大学学报(自然科学版)》 CAS 2008年第3期38-42,共5页 Journal of Nanjing Tech University(Natural Science Edition)
关键词 烷烃 金属有机骨架 吸附 蒙特卡罗模拟 alkanes metal-organic frameworks adsorption Monte Carlo simulation
  • 相关文献

参考文献15

  • 1Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[ J]. Science, 2002, 295:469 -472.
  • 2Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks [ J ]. Science, 2003, 300: 1127 - 1129.
  • 3Li Y W, Yang R T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover[ J ]. Journal of the American Chemical Society, 2006, 128 (3) : 726 - 727.
  • 4Wang Q M, Shen D M, Bulow M, et al. Metallo-organic molecular sieve for gas separation and purification[J]. Microporous and Mesoporous Materials, 2002, 55 (2): 217- 230.
  • 5Vishnyakov A, Ravikovitch P I, Neimark A V, et al. Nanopore structure and sorption properties of Cu-BTC metal-organic framework[J]. Nano Letters, 2003, 3(6): 713 -718.
  • 6Sarkisov L, Duren T, Snurr R Q. Molecular modelling of adsorption in novelnanoporous metal-organic materials [ J ]. Molecular Physics, 2004, 102(4) : 211 -221.
  • 7Duren T, Snurr R Q. Assessment of isoreticular metal-organic frameworks for adsorption separations: a molecular simulation study of methane/n-butane mixtures [ J ]. Journal of Physical Chemistry B, 2004, 108(40) : 15703 - 15708.
  • 8Chui S S Y, Lo S M F, Charmant J P H, et al. Chemically functionalizable nanoporous material [ Cu3 ( TMA ) 2 ( H2O ) 3 ] n [ J ]. Science, 1999, 283 : 1148 - 1150.
  • 9Martin M G, Siepmann J I. Transferable potentials for phase equilibria: 1. united-atom description of n-alkanes [ J ]. Journal of Physical Chemistry: B, 1998, 102(14):2569-2577.
  • 10Mayo S L, Olafson B D, Goddard W A. Dreiding, a generic force field for molecular simulations [ J ]. Journal of Physical Chemistry, 1990, 94(26) : 8897 -8909.

同被引文献52

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部