摘要
设G是一个图,g和f是定义在图G的顶点集上的两个整数值函数,且g≤f.图G的一个(g,f)—因子是G的一个支撑子图H,使对任意x∈V(H)有g(x)≤dH(x)≤f(x).若图G的边集能划分为若干个边不相交的(g,f)—因子,则称G是(g,f)—可因子化的.给出了一个图是(g,f)—可因子化的一个充分条件,改进了有关结果.
Let G be a graph and g,f be two integer valued functions defined on V(G) such that g(x)≤f(x) for every x∈V(G).A (g,f)-factor of a graph G is a spanning subgraph H of G such that g(x)≤dH(x)≤f(x) for every x∈V(H).A graph G is said to be (g,f)-factorable if E(G) can be partitioned into several edge disjoint (g,f)-factors.In this paper,one sufficient condition for a graph to be (g,f)-factorable is given,which improves some results.
出处
《武汉水利电力大学学报》
CSCD
1997年第6期102-104,共3页
Engineering Journal of Wuhan University
关键词
图
因子
因子分解
graph
factor
factorization