期刊文献+

随机利率下年金的时间价值 被引量:1

TIME VALUE OF ANNUITY WITH RANDOM INTEREST RATE
下载PDF
导出
摘要 本文首先在常数利率下讨论了递增年金、递减年金和固定增长年金的终值.进而在随机利率条件下研究了递增年金、递减年金和固定增长年金,得到了递增年金、递减年金和固定增长年金终值的期望与方差,推广了Zaks(2001)的结果. At first, the accumulated values of increasing annuity, deceasing annuity and fixed increasing annuity with constant interest rates are investigated. Furthermore, theincreasing annuity, deceasing annuity and fixed increasing annuity under random interest rates are considered,and the expectations and variances of their accumulated values are derived, which gen-eralize the results in Zaks(2001).
出处 《经济数学》 2008年第1期1-9,共9页 Journal of Quantitative Economics
基金 甘肃自然科学基金(ZS-011-A25-024-G) 甘肃省教育厅科研项目(041-14)
关键词 年金 终值 现值 期望 方差 独立随机变量 Annuitied, Future value, Present value, Expected value, Variance, Independent random variable
  • 相关文献

参考文献7

  • 1Boyle,P.P. Rates of return as random variables[J]. Journal of Risk and Insurance, 1976,53(4),693- 713.
  • 2McCuthcheon, J.J.Scott, W.F., An Introduction to the Mathematics of finance[M]. London:Butterworth/Heinemann, 1986.
  • 3Westcott, D. A. Moments of compound interest functions under fluctuating interest rates[ J]. Scandinavian Actuarial Journal 1981,4(2) ,237 - 244.
  • 4Kellison,S.G. The Theory of interest [M] .Irwin, Homewood, IL,1991.
  • 5Gerber, H.U. Life Insurance Mathematics [ M ]. Berlin: Springer, 1997.
  • 6Zaks, A. Annuities under random rates of interest[ J ]. Insurance : Mathematics and Economics, 2001,28( 1 ), 1 - 11.
  • 7Bumecki, K. Marciniuk, A., Weron, A., Annuities under random rates of interest-revisited[ J]. Insurance : Mathematics and Economics, 2003,32(2) :457 - 460.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部