摘要
本文介绍了支持向量分类机,并引入具有更好识别能力的KMOD核函数建立了SVM信用卡分类模型.利用澳大利亚和德国的信用卡数据进行了数值实验,结果表明该模型在分类准确率、支持向量方面优于基于RBF的SVM模型.
In this paper, we give a desvription of support vector classification machine, and established support vector machine credit classification based on a better discrimination kernel function named KMOD. Experiment with the credit card data of Australia and German showed our model outperformed RBF based SVM in classification accuracy and support vectors.
出处
《经济数学》
2008年第1期24-27,共4页
Journal of Quantitative Economics
基金
国家自然科学基金资助项目(No.70371028)