期刊文献+

基于KMOD核函数的SVM方法在信用评分中的应用 被引量:3

APPLICATION OF SVM BASED ON KMOD FUNCTION IN CREDIT SCORING
下载PDF
导出
摘要 本文介绍了支持向量分类机,并引入具有更好识别能力的KMOD核函数建立了SVM信用卡分类模型.利用澳大利亚和德国的信用卡数据进行了数值实验,结果表明该模型在分类准确率、支持向量方面优于基于RBF的SVM模型. In this paper, we give a desvription of support vector classification machine, and established support vector machine credit classification based on a better discrimination kernel function named KMOD. Experiment with the credit card data of Australia and German showed our model outperformed RBF based SVM in classification accuracy and support vectors.
出处 《经济数学》 2008年第1期24-27,共4页 Journal of Quantitative Economics
基金 国家自然科学基金资助项目(No.70371028)
关键词 信用卡 KMOD核函数 支持向量机 Credit card, KMOD function, support vector machine
  • 相关文献

参考文献5

  • 1Lee, Yong-Chan Application of support vector machines to corporate credit rating prediction[ J ]. Expert Systems with Applications, 2007,33(1) :67 - 74.
  • 2Huang Z., Chen H., Hsu C.J., Chen W. H and Wu S. Credit raging analysis with support vector machines and neural networks: a market comparative study[J]. Decision Support Systems, 2004,37(4),543- 558.
  • 3Vapnik V N. The nature of statistical learning theory[M]. New York: Springer- Verlag, 1995.
  • 4Ayat N E, Cheriet M, Renaki L, etal. KMOD-a new support vector machine kernel with moderate decreasing for pattern recognition: application to digit image recognition. Proceedings of 6^th Int Conf on Document Analysis and Recognition Seattle, USA: IEEE, 2001,1215-1211.
  • 5Chang C C, Lin C J. LIBSVM : a library for support vector machined[ J]. Available from http://www. csie. ntu. edu. tw/-cjlin/libsvm. 2001.

同被引文献28

  • 1陈秋华,杨慧荣,崔恒建.变量筛选后的个人信贷评分模型与统计学习[J].数理统计与管理,2020,39(2):368-380. 被引量:9
  • 2李建平,徐伟宣,石勇.基于主成分线性加权综合评价的信用评分方法及应用[J].系统工程,2004,22(8):64-68. 被引量:14
  • 3Fisher R A.The use of multiple measurement intaxonomic problems[J].Annuals of Eugenics,1936(7):179-188.
  • 4Durand D.Risk elements in consumer installment financing[R].National Bureau of Economic Research,New York,1941:37-69.
  • 5Myers J H,Forgy E W.The development of numerical credit evaluation systems[J].Journal of the American Statistical As-sociation,1963(58):779-806.
  • 6Wiginton J C.A note on the comparison of logit and discriminant models of consumer credit behavior[J].Journal of Financial and Quantitative Analysis,1980(15):757-770.
  • 7Coffman J Y.The proper role of tree analysis in forecasting the risk behavior of borrowers[J].MDS Reports,Management Decision System,Atlanta,1986:3-9.
  • 8Chatterjee,Barcun.A nonparametric approach to credit screening[J].Journal of the American Statistical Association,1970,65(329):150-154.
  • 9Erenguc S S,Koehler G J.Survey of mathematical programming models and experimental results for linear discriminant analysis[J].Managerial and Decision Economics,1990(11):215-225.
  • 10Davis R H,Edelman D B,Gammermann A J.Machine learning algorithms for credit card applications[J].IMA Journal of Mathematics Applied in Business and Industry,1992(4):43-51.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部