期刊文献+

可重入制造系统的产出短期预测方法研究 被引量:1

The short-term prediction method of throughput for En-entrant manufacturing system
下载PDF
导出
摘要 针对可重入制造系统处于高度不确定性环境中,其产出时间序列的非线性特征,提出了基于遗传小波神经网络的产出短期预测方法,使预测模型具有小波的优良逼近性质和神经网络的自学习自适应性质,同时,采用遗传算法训练神经网络参数,利用遗传算法隐含并行性和全局搜索性的特征,丰富优化过程中的搜索行为,增强全局和局部意义下的搜索能力和效率。通过半导体生产线实例,进行了验证,结果表明所提出的基于遗传小波神经网络的产出短期预测方法的预测性能要优于传统BP神经网络算法。 The re-entrant manufacturing systems (RMS) under the high uncertain environment have the non-linear characteristic of time series in the throughput. GA & wavelet neural network based short-term prediction method of throughput is proposed. It makes the prediction model have the excellent toward feature of wavelet analysis and the self-study & self-adaptive characteristic of neural network. At the same time, the parameters of neural network are trained by the genetic algorithm, and the search behaviors of optimal process are enriched by using the characteristic of recessive concurrent and whole search of genetic algorithm so as to enhance the overall and local search capacity and efficiency. The Case study of semiconductor production line is as experiment. The experimental results demonstrate the effectiveness of the above proposed method and it has precedence over the back propagation (BP) of neural network in the prediction performance.
作者 陈雪芳 张洁
出处 《制造业自动化》 北大核心 2008年第5期24-27,共4页 Manufacturing Automation
基金 国家自然科学基金(50575137) 苏州市科技发展计划项目(SGA0623)
关键词 可重入制造系统 神经网络 遗传算法 预测 re-entrant manufacturing systems neural network genetic algorithm prediction
  • 相关文献

参考文献8

  • 1Uzsoy R, LEE C Y, Martin V L A. A review of production planning and scheduling models in the semiconductor industry. Part Ⅰ: system characteristics, performance evaluation and production planning[J]. IIE Trans, 1992, 24(4):47-60.
  • 2Uzsoy R, L C, Martin V L A. A review of production planning and scheduling models in the semiconductor industry part Ⅱ: shop-floor control [J]. IIE Transactions, 1994, 26(5):44-55.
  • 3Kumar P R. Reentrant lines [J]. Queueing Systems, 1993, 13 (1-2):87-110.
  • 4田铮.动态数据处理的理论与方法--时间序列分析[M].西安:西北大学出版社,2001.
  • 5Gao L. Lu, L, Li Z. Prediction of chaotic time series based on wavelet neural network[Z],Oceans Conference Record (IEEE), 2001(4): 2046-2050.
  • 6Chen Z, Feng T J, Meng Q C. Application of wavelet neural network in time series prediction and system modeling based on multi-resolution learning[J]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1999(1):425-430,
  • 7Soltani S. On the use of the wavelet decomposition for time series prediction[J]. Neurocomputing, 2002(48):267-277.
  • 8Mitani Y, Tsutsumoto K, Kagawa N, Time series prediction of acoustic signals using neural network model and wavelet shrinkage[C]. Proceedings of the Tenth International Congress on Sound and Vibration, 2003, 4189-4193.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部