期刊文献+

A Maple Package to Compute Lie Symmetry Groups and Symmetry Reductions of (1+1)-Dimensional Nonlinear Systems 被引量:1

A Maple Package to Compute Lie Symmetry Groups and Symmetry Reductions of (1+1)-Dimensional Nonlinear Systems
下载PDF
导出
摘要 Armed with the computer algebra system Maple, using a direct algebraic substitution method, we obtain Lie point symmetries, Lie symmetry groups and the corresponding symmetry reductions of one component nonlinear integrable and nonintegrable equations only by clicking the ‘Enter' key. Abundant (1+1)-dimensional nonlinear mathematical physical systems are analysed effectively by using a Maple package LieSYMGRP proposed by us. Armed with the computer algebra system Maple, using a direct algebraic substitution method, we obtain Lie point symmetries, Lie symmetry groups and the corresponding symmetry reductions of one component nonlinear integrable and nonintegrable equations only by clicking the ‘Enter' key. Abundant (1+1)-dimensional nonlinear mathematical physical systems are analysed effectively by using a Maple package LieSYMGRP proposed by us.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第6期1927-1930,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundations of China under Grant Nos 10735030, 10475055, and 90503006, the National Basic Research Programme of China under Grant No 2007CB814800, and PCSIRT (IRT0734), the Research Fund of Postdoctoral of China under Grant No 20070410727, and the Research Found of SNNU.
关键词 DIFFERENTIAL-EQUATIONS DIFFERENTIAL-EQUATIONS
  • 相关文献

参考文献14

  • 1Bluman G W and Kumei S 1989 Symmetries and Differential Equations: Applied Mathematical Sciences 81 (Berlin: Springer)
  • 2Schwarz F 1988 Lecture Notes in Comput. Sci. 296 167
  • 3Schwarz F and Augustin S 1992 Computing 49 95
  • 4Champagne B, Hereman W and Winternitz P 1991 Comp. Phys. Comm. 66 319
  • 5Hereman W 1994 Eur. Math. Bull. 1 45
  • 6Baumann G 1992 Lie Symmetries of Deferential Equations: A Mathematica Program to Determine Lie Symme. tries MathSource 0202-622 (Champaign, IL: Wolfram Research Inc.)
  • 7Carminati J, Devitt J S and Fee G J 1992 J. Symb. Comput. 14 103
  • 8Korteweg D J and de Vries G 1985 Philos. Magn. 39 422
  • 9Boussinesq J 1871 Comptes Rendus Acad. Sci. Paris 72 755
  • 10Whittham G B 1974 Linear and Nonlinear Waves (New York: Wiley)

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部