期刊文献+

Non-Commutative Fock-Darwin System and Magnetic Field Limits

Non-Commutative Fock-Darwin System and Magnetic Field Limits
下载PDF
导出
摘要 A Fock-Darwin system in noncommutative quantum mechanics is studied. By constructing Heisenberg algebra we obtain the levels on noncommutative space and noncommutative phase space, and give the corrections to the results in usual quantum mechanics. Moreover, to search the difference among the three spaces, the degeneracy is analysed by two ways, the value of ω/ωe and certain algebra realization (SU(2)and SU(1,1)), and some interesting properties in the magnetic field limit are exhibited, such as totally different degeneracy and magic number distribution for the given frequency or mass of a system in strong magnetic field. A Fock-Darwin system in noncommutative quantum mechanics is studied. By constructing Heisenberg algebra we obtain the levels on noncommutative space and noncommutative phase space, and give the corrections to the results in usual quantum mechanics. Moreover, to search the difference among the three spaces, the degeneracy is analysed by two ways, the value of ω/ωe and certain algebra realization (SU(2)and SU(1,1)), and some interesting properties in the magnetic field limit are exhibited, such as totally different degeneracy and magic number distribution for the given frequency or mass of a system in strong magnetic field.
作者 余晓敏 李康
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第6期1980-1983,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 10575026, and the Natural Science Foundation of Zhejiang Provence under Grant No Y607437.
关键词 QUANTUM-MECHANICS M(ATRIX) THEORY AHARONOV-BOHM PHASE-SPACE SPECTRUM GEOMETRY BRANE PLANE QUANTUM-MECHANICS M(ATRIX) THEORY AHARONOV-BOHM PHASE-SPACE SPECTRUM GEOMETRY BRANE PLANE
  • 相关文献

参考文献43

  • 1Seiberg N et al 1999 J. High Energy Phys. 032 9909
  • 2Connes A et al 1998 J. High Energy Phys. 003 9802
  • 3Douglas M R et al 1998 J. High Energy Phys. 008 9802
  • 4Douglas M R et al 2001 Rev. Mod. Phys. 73 977
  • 5Ardalan F et al 1999 J. High Energy Phys. 016 9902
  • 6Curtright T et al 1998 Phys. Rev. D 58 25002
  • 7Mezincescu L hep-th/0007046
  • 8Chu S C and Ho P M 1999 Nucl. Phys. B 550 151
  • 9Chu S C and Ho P M 2000 Nucl. Phys. B 568 447
  • 10Schomerus V 1999 J. High Energy Phys. 030 9906

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部