期刊文献+

一种机器人路径规划的蚁群算法 被引量:28

Novel ant colony optimization algorithm for robot path planning
下载PDF
导出
摘要 提出一种机器人路径规划的蚁群算法,该算法引入信息素限定和自适应信息素挥发系数的方法解决蚁群算法应用中的停滞现象和搜索能力的问题。算法仿真研究中发现了算法的收敛速度和环境地图建模的方式有密切关系,提出栅格地图模型的坐标变换法,提高了算法的运行效率。比较仿真实验结果证实了本算法的有效性和快速性。 A novel ant colony optimization (ACO) algorithm for robot path planning is presented. The method of pheromone restriction and adaptive volatile coefficient is proposed to solve the problem of algorithm stagnation and global searching ability in the process of traditional ACO application. The relation between the algorithm running rate and map modeling method is found in the simulation process of ACO, so the coordinate transformation of grid map modeling is proposed to improve the algorithm running rate. The comparative simulation results are shown the effectiveness and speediness of this algorithm.
作者 陈雄 袁杨
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第5期952-955,共4页 Systems Engineering and Electronics
关键词 蚁群算法 路径规划 栅格地图建模 ant colony optimization path planning grid map modeling
  • 相关文献

参考文献7

二级参考文献24

  • 1郝晋,石立宝,周家启.具有随机扰动特性的蚁群算法[J].仪器仪表学报,2001,22(z1):350-352. 被引量:8
  • 2Takahiro Ikeda, Min-Yao Hsu, Hiroshi Imai. A Fast Algorithm for Finding Better Routes by AI Search Techniques[C]. IEEE Vehicle Navigation & Information Systems Conference Proceedings, 1994:291-296.
  • 3Filipe Araújo, Bernardete Ribeiro, Luís Rodrigues. A Neural Network for Shortest Path Computation[J]. IEEE Transactions on Neural Networks, Sep.2001, 12(5): 1067-1073.
  • 4Mitsuo Gen, Runwei Cheng, Dingwei Wang. Genetic Algorithms for Solving Shortest Path Problems[J]. IEEE, 1997:401-406.
  • 5Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agent 26(1): 29-41
  • 6Colorni A. Heuristics from nature for hard combinatorial optimization problems. Int Trans in Opnl Res, 1996,3(1):1-21
  • 7Dorigo M, Gambardella L M. A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation, 1997,1(1): 53-66
  • 8Dorigo M. And G.Di Caro (1999). The Ant Colony Optimization Meta-Heuristic. In D.Corne, M.Dorigo and F.Glover(eds), New Ideas in Optimization. McGraw-Hill, 1999.(Also available as: Tech. Rep. IRIDIA/99-1,Universite Libre de Bruxelles, Belgium.)
  • 9Lee J H, Park S M, Chwa K Y. Searching a polygonal room with a door by a 1-seracher[ J]. The International Journal of Computer Geometry and Application, 2000, 8(2) :201 -220.
  • 10LaValle S M, Kuffner J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research, 2001,20 (5) :378 -398.

共引文献117

同被引文献278

引证文献28

二级引证文献314

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部