期刊文献+

A New Splitting Active Contour Framework Based on Chan-Vese Piecewise Smooth Model 被引量:3

A New Splitting Active Contour Framework Based on Chan-Vese Piecewise Smooth Model
下载PDF
导出
摘要 根据 Chan-Vese 模型,为图象分割的一个新切开的活跃轮廓方法被介绍。主要想法追随者将在每次重复把一幅图象划分成二部分,它类似于房间切开的过程。然后,模型能在图象检测所有目标或细节。另外,它享受在图象处理任何特定的区域的优点,甚至不顺序的。而分割被限制到兴趣(ROI ) 而非整个图象的区域,这直接导致计算效率的改进。由于操作的地区性的限制,而且,我们的模型超过存在多相的 Chan-Vese 模型以到初始化的敏感。我们的模型的原则详细被描述,并且方法在水平集合框架下面被实现。合成、医药的图象的实验被执行,并且比较级结果到 Chan-Vese 模型和多相的 Chan-Vese 模型也被显示出。 On the basis of the Chan-Vese model, a new splitting active contour method for image segmentation is presented. The main idea following is to divide an image into two parts at every iteration, which is similar to the procedure of cell splitting. Then, the model is able to detect all the objects or details in the image. In addition, it enjoys the merit of processing any specific region in the image, even the inconsecutive one. This directly leads to the improvement of computing efficiency whereas segmentation is limited to region of interest (ROI) rather than the whole image. Furthermore, due to the regional constraint of operation, our model outperforms the existing multiphase Chan-Vese model in terms of sensitivity to the initialization. The principle of our model is described in detail, and the method is implemented under the level set framework. Experiments on both synthetic and medical images are carried out, and the comparative results to Chan-Vese model and multiphase Chan-Vese model are also shown.
出处 《自动化学报》 EI CSCD 北大核心 2008年第6期659-664,共6页 Acta Automatica Sinica
基金 Supported by National Natural Science Foundation of China (60375001) and Ph.D. Discipline Special Foundation of China (20030532004)
关键词 图象分割技术 图象处理 计算机技术 分段光滑模式 Image segmentation, deformable model, splitting method, Mumford-Shah model, level set
  • 相关文献

参考文献19

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. International Journal of Computer Vision, 1988, 1(4): 321-331
  • 2Terzopoulos D, Witkin A, Kass M. Constraints on deformable models: recovering 3D shape and nonrigid motion. Artificial Intelligence, 1988, 36(1): 91-123
  • 3Caselles V, Kimmel R, Sapiro G. Geodesic active contours. In: Proceedings of the 5th International Conference on Computer Vision. Boston, USA: IEEE, 1995. 694-699
  • 4Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1): 61-79
  • 5Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A. Gradient flows and geometric active contour models. In: Proceedings of the 5th International Conference on Computer Vision. Boston, USA: IEEE, 1995. 810-815
  • 6Krissian K, Ellsmere J, Vosburgh K, Kikinis R, Westin C F. Multiscale segmentation of the aorta in 3D ultrasound images. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS. Cancun, Mexico: IEEE, 2003. 638-641
  • 7Han X, Xu C Y, Prince J L. A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 755-768
  • 8Suri J S. Two-dimensional fast magnetic resonance brain segmentation. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(4): 84-95
  • 9Geomes J, Faugeras O D. Level sets and distance functions. In: Proceedings of the 6th European Conference on Computer Vision-Part Ⅰ. London, UK: Springer-Verlag, 2000. 588-602
  • 10Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277

同被引文献42

  • 1罗钟铉,刘成明.灰度图像匹配的快速算法[J].计算机辅助设计与图形学学报,2005,17(5):966-970. 被引量:72
  • 2赵鹏,曹军,浦昭邦,张田文.基于图像融合的运动目标轮廓提取新方法[J].光电子.激光,2005,16(8):973-977. 被引量:6
  • 3田晓东,刘忠,周德超.基于形状描述直方图的声呐图像目标识别算法[J].系统工程与电子技术,2007,29(7):1049-1052. 被引量:5
  • 4Chan T, Vese L. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-276.
  • 5r Chan T, Sandberg B, Vese L. Active contours without edges for vector-valued images[J]. Journals of Visual Communica- tion and Image Representation, 2000, 11 (2): 130-141.
  • 6He Lei, Peng Zhigang, Bryan E, et al. A comparative study of deformable contour methods on medical image segmen- tation[J]. Image and Vision Computing, 2008, 26(2): 141-163.
  • 7Chan T, Vese L. Active contour and segmentation models using geometric PDE' s for medical imaging[M]//Geomet- ric Methods in Bio-Medical Image Processing. Berlin, Hei- delberg: Springer, 2002: 63-75.
  • 8Ge Qi, Xiao Liang, Zhang Jun, et al. An improved region-based model with local statistical features for image segmentation[J]. Pattern Recognition, 2012, 45(4): 1578-1590.
  • 9Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
  • 10Wang Xiaofeng, Huang Deshuang, Xu Huan. An efficient local Chan-Vese model for image segmentation[J]. Pattern Recognition, 2010, 43(3): 603-618.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部