期刊文献+

基于案例推理的浮选过程智能优化设定 被引量:18

Intelligently Optimal Index Setting for Flotation Process by CBR
下载PDF
导出
摘要 针对在浮选过程中表征关键工艺指标的精矿品位和尾矿品位难以建立精确数学模型,而常规控制方法又难以进行有效控制的难题,将案例推理和常规控制相结合,提出了基于案例推理技术的浮选过程工艺指标优化设定方法.该方法从浮选过程积累的大量过程历史数据中获取过程知识,将典型生产工况总结成案例的形式来构造案例库,并对案例检索、案例重用、案例修正及存储进行了论述.由智能优化设定模型自动更新基础控制回路的设定值,避免了人工手动设定的主观性和随意性.该方法应用于某选矿厂浮选过程,取得了显著的应用效果,表明了该方法的有效性. In the flotation process it is hard to develop an accurate mathematical model for both concentrate grade and tailing grade which characterize the key technical indices. However, it is also hard to control efficiently the process by conventional methods. A new way is therefore recommended combining the case-based reasoning (CBR) with conventional control methods, i.e. the intelligently optimal index setting by CBR. In this way the experience of flotation process can be grasped more profoundly from lots of historical process data so as to build a case database which summaries typical operation conditions. The retrieval, reuse, revision and store of those cases are discussed in CBR. The intelligently optimal index setting model can update automatically all setpoints in every control loop so as to avoid the subjectivity and randomness due to arbitrary manual control setting. This approach has been successfully applied to a flotation process in a mineral processing plant with its effectiveness actually proved.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第6期761-764,共4页 Journal of Northeastern University(Natural Science)
基金 国家重点基础研究发展计划项目(2002CB312201) 国家自然科学基金重点资助项目(60534010) 国家创新研究群体科学基金资助项目(60521003) 长江学者和创新团队发展计划项目(IRT0421)
关键词 浮选过程 精矿品位 尾矿品位 案例推理 优化设定 flotation process concentrate grade tailing grade case-based reasoning(CBR) optimal index setting
  • 相关文献

参考文献10

  • 1Hodouina D, Jarnsa S L, Carvalho M T, et al. State of the art and challenges in mineral processing control [ J ]. Control Engineering Practice, 2001,9: 995 - 1005.
  • 2Perez R, Gonzalez G, Casali A, et al. Dynamic modeling and advanced multivariable control of conventional flotation circuits[J]. Minerals Engineering, 1998, 11 (4): 336 - 346.
  • 3Suichies M, Leroux D, Deehert C, et al. An implementation of generalized predictive control in a flotation plant [ J ]. Control Engineering Practice, 2000,8 : 319 - 325.
  • 4Kaartinen J, Hatonen J, Hyotynierni H, et al. Machinevision-based control of zinc flotation-a case study [ J ]. Control Engineering Practice, 2006,14:1455 - 1466.
  • 5Cilek E C. Application of neural networks to predict locked cycle flotation test results[J]. Minerals Engineering , 2002, 15 (12) : 1095 - 1104.
  • 6Watson I, Marir F. Case-based reasoning: a review[J]. Knowledge Engineering Review, 1994,9(4) :355 - 381.
  • 7Schrnidt R, Montani S, Bellazzi R. Case-based reasoning for medical knowledge-based system[J ]. International Journal of Medical Informatics, 2001,64: 355 - 367.
  • 8Chan F T S. Application of a hybrid case-based reasoning approach in electroplating industry[J ]. Expert System with Application, 2005,29( 1 ) : 121 - 130.
  • 9杨辉,王永富,柴天佑.基于案例推理的稀土萃取分离过程优化设定控制[J].东北大学学报(自然科学版),2005,26(3):209-212. 被引量:9
  • 10Chai T Y, Liu J X, Ding J L, et al. Hybrid intelligent control for hematite high intensity magnetic separating process[J]. Measurement and Control, 2007, 40:171 - 175.

二级参考文献4

共引文献8

同被引文献190

引证文献18

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部