期刊文献+

基于免疫进化策略的神经网络优化方法 被引量:1

Optimization Algorithm Based on Immune Evolutionary Strategy for Neural Network
下载PDF
导出
摘要 对神经网络的研究多年来主要集中于网络权值优化或结构优化上,却忽略了神经网络结构与权值之间密不可分的联系.针对上述问题,将免疫系统中的浓度机制和记忆机制引入进化策略,提出了一种基于免疫进化策略的神经进化算法,在优化网络拓扑结构的同时优化网络的连接权值.进一步地,用Cauchy变异算子代替传统的Gauss变异算子,以获得更为理想的全局收敛效果.理论分析和仿真结果表明,免疫进化策略能够很好地保持种群多样性,避免未成熟收敛,采用免疫进化策略设计神经网络具有良好的全局收敛性能和快速学习网络结构和网络权值的能力. The researches on neural network ignored the closely related connection between its architecture and the weighted value for years, but mainly focused on their optimization. A neural evolution algorithm based on immune-evolution strategy is therefore proposed introducing the concentration/memory mechanism of immune system into evolutionary strategy, which can optimize simultaneously both the topological structure of network and weighted value for connection. Furthermore, the algorithm introduces the Cauchy operator instead of Gauss operator to obtain better global convergence. Theoretical analysis and simulation results both show that the algorithm can retain the population diversity, and avoid premature convergence with better global convergence as well as the ability to learn faster to learn the architecture and the weighted value of network.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第6期794-797,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60674063) 辽宁省自然科学基金资助项目(20062024)
关键词 免疫进化策略 神经网络 全局收敛 优化 变异算子 immune evolution strategy neural network global convergence optimization variational operator
  • 相关文献

参考文献14

  • 1Kwok T, Yeung D. Constructive algorithms for structure learning in feedward neural networks for regression problems [J ]. IEEE Trans on Neural Network, 1997,8 ( 3 ) : 630 - 645.
  • 2Philippe L. A node pruning algorithm based on a Fourier amplitude sensitivity test method [J ]. IEEE Trans on Neural Network, 2006,17(2):273 - 293.
  • 3Sietsma J, Dow R. Neural net pruning-why and how[C]// Proc IEEE Int Conf Neural Networks. San Francisco: Morgan Kaufmarm, 1990: 325 - 333.
  • 4Wu J, Liu M. Improving generalization performance of artificial neural network with genetic algorithms[J]. IEEE Trans on Granular Computing, 2005,2( 1 ) : 288 - 291.
  • 5Angeline P. An evolutionary algorithm that constructs recurrent neural networks [ J ]. IEEE Trans on Neural Networks, 1994,5( 1 ) : 54 - 65.
  • 6Maniezzo V. Genetic evolution of the topology and weight distribution of neural networks[J]. IEEE Trans on Neural Networks, 1994,5 ( 1 ) : 39 - 53.
  • 7Whitley D. Genetic reinforcement learning for neuro-control problems[J ]. Machine Learning, 1993,13:259 - 284.
  • 8Tsai J, Chou J, Liu T. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm[J]. IEEE Trans on Neural Networks, 2006, 17 (1):69-80.
  • 9Mezura M, Coello C. A simple multimembered evolution strategy to solve constrained optimization problems [J]. IEEE Trans on Evolutionary Computation, 2005,9 ( 1 ) : 1 -17.
  • 10罗文坚,曹先彬,王煦法.关于一种免疫遗传算法的性能分析[J].系统仿真学报,2006,18(4):873-876. 被引量:9

二级参考文献5

  • 1Yao X,Proc of the Fifth Annual Conference on Evolutionary Programming,1996年
  • 2G Rudolph.Convergence analysis of canonical genetic algorithms[J].IEEE Trans.on Neural Networks (S1045-9227).1994,5(1):96-101.
  • 3Wenjian Luo,Xianbin Cao.Xufa Wang.An immune genetic algorithm based on immune regulation[C]//In the proceedings of the 2002 Congress on Evolutionary Computation,Honolulu,Hawaii,2002,801-806.
  • 4L A Segel,A S.Perelson.Computations in shape space:a new approach to immune network theory.Theoretical Immunology,Editor,[M].A.S.Perelson,Addison-Wesley,1988.
  • 5罗文坚,曹先彬,王煦法.用一种免疫遗传算法求解频率分配问题[J].电子学报,2003,31(6):915-917. 被引量:29

共引文献20

同被引文献18

  • 1方敏,王宝树.基于进化策略的多传感器雷达辐射源目标识别方法[J].控制理论与应用,2004,21(2):165-168. 被引量:2
  • 2Bengio Y, Delalleau O. On the expressive power of deep archi-tecture [M]// Algorithmic Learning Theory. Springer,2011:18-36.
  • 3Bengio Y. Deep Learning of representations for unsupervisedand transfer leamingCCj/ZlMLR Washington, USA, 2012; 17-36.
  • 4Hinton G,Salakhutdinov R. Reducing the dimensionality of datawith neural networks [J]. Science,2006,313(5786) :504-507.
  • 5Hinton, Salakhudinov R. Training a deep auto-encoder or a clas-sifier on MINIST digits [OL]. http://www. cs. toronto. edu/Hinton/Matlab For Science Paper, html.
  • 6Kantardzic M. Data Mining: Conception, Model, and Algorithm(Edition 2)[M]. Beijing:Tsinghua University press,2013.
  • 7Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise trai-ning of deep networks [C]//Proc of the 12th Annual Confer-ence on Neural Information Processing System. 2006; 153-160.
  • 8Hinton G,Osindero S,Teh Y. A fast learning algorithm for deepbelief nets[J]. Neural Computation,2006,18(7) : 1527-1554.
  • 9Bengio Y. Learning Deep Architectures for AI[J], Foundationsand Trends in Machine Learning,2009.2(1) : 1-127.
  • 10Deep Learning 和 Knowledge Graph 引爆大数据革命[OL]. ht-tp://blog. sina. com. cn/s/blog_46d0a3930101fswl. html.

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部