摘要
高温气冷堆乏燃料采用后处理路线能充分利用核资源并减少需要最终地质处置的核废物量,有利于核能的可持续发展。传统的LWR乏燃料后处理首端过程不能用于处理高温气冷堆的乏燃料。高温气冷堆乏燃料元件及包覆层颗粒的破碎是首端处理技术的难点。破碎乏燃料元件及去除石墨的方法主要有机械碾碎法、燃烧法、脉冲电流法等;破碎及去除碳化硅的方法有传统机械碾碎法,以及正在发展中的熔融法、气流喷射粉碎法等,其中,气流喷射粉碎法具有较好的发展前景。目前,尚无一种理想的技术来解决高温气冷堆乏燃料后处理中的首端过程问题,需进一步开展高温气冷堆乏燃料后处理技术的研究。
The reprocessing of high-temperature gas-cooled reactor (HTGR) spent fuels is in favor of the sustainable development of nuclear energy because it is a strategy to realize the maximal use of nuclear resource and the minimum disposal of nuclear waste. The head-end of HTGR spent fuels reprocessing is different from that of the LWR spent fuels reprocessing because of the special structure of HTGR spent fuels. The dismantling of the graphite spent fuel and the smash of the coated granule are the most difficult process in the head-end of the reprocessing. Most of research work is focused on this area. The main methods to treat the graphite include the mechanical grinding, fluid bed burning, and melting, etc. The mechanical grinding method was studied to smash SiC. Some new techniques such as pulse currents method and jet grinding are under investigation. The jet grinding is a promising method. The main pyroreprocessing technology for HTGR spent fuels is the fluoride method. Up to now no ideal technology can solve the problem in the head-end of the reprocessing. It is necessary to speed the further study and develop the new methods.
出处
《原子能科学技术》
EI
CAS
CSCD
北大核心
2008年第5期416-422,共7页
Atomic Energy Science and Technology
关键词
高温气冷堆
乏燃料后处理
首端
high-temperature gas-cooled reactor
spent fuel reprocessing
head-end