期刊文献+

基于二维隐Markov模型的图像分割新算法

New Image Segmentation Algorithm Based on 2D Hidden Markov Model
下载PDF
导出
摘要 提出了一种新的二维隐Markov模型解码准则,利用贪心法求得次最优解,在一些假设的基础上推导出计算上可行的递归形式;并将新的解码准则应用于图像分割,实现了一种迭代的图像分割算法。每一次迭代中,解码过程按照自上而下、自左向右的顺序进行。此外,还针对基于二维隐M arkov模型的图像分割方法存在的常见问题,给出了简单有效的后处理方案,消除了孤立点,取得了较好的分割效果。 XA new decoding criterion for 2D hidden Markov model is proposed and a local optimal solution is provided with a greedy algorithm. For computational feasibility, the recursion is derived based on some assumptions. The new criterion is applied to image segmentation and an iterative image segmentation algorithm is implemented. In each iteration, the decoding is done from top to bottom and from left to right. Furthermore, an easy and effective post-pro- cessing method is adopted to overcome the common problem in image segmentation based on 2D hidden Markov model. The method eliminates isolated points and obtains good segment resuits.
出处 《数据采集与处理》 CSCD 北大核心 2008年第3期254-258,共5页 Journal of Data Acquisition and Processing
关键词 图像分割 二维隐Markov模型 解码问题 image segmentation 2D hidden Markov model decoding problem
  • 相关文献

参考文献9

  • 1Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proceedings of the IEEE, 1989, 77(2): 257-286.
  • 2Li J, Najmi A, Gray R M. Image classification by a two-dimensional hidden Markov model [J]. IEEE Trans Signal Processing, 2000, 48(2) : 517-532.
  • 3Othman H, Aboulnasr T. A separable low complex- ity 2D HMM with application to face recognition [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2003, 25(10):1229-1238.
  • 4Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm [J]. IEEE Trans Medical Imaging, 2001, 20 (1) : 45-57.
  • 5Fjortoft R, Delignon Y, Pieczynski W, et al. Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields[J]. IEEE Trans Geoscience and Remote Sensing, 2003, 41(3): 675-686.
  • 6Park H S, LEE S W. A truly 2D hidden Markov model for off-line handwriting character recognition [J]. Pattern Recognition, 1998, 31(12): 1849- 1864.
  • 7Park M, Miller D J. Improved image decoding over noisy channels using minimum mean-squared estima- tion and a Markov mesh[J]. IEEE Trans Image Processing, 1999, 8(6): 863-867.
  • 8Juang B H, Rabiner L R. The segmental K-means algorithm for estimating parameters of hidden Markov models [J]. IEEE Trans Acostics Speech and Signal Processing, 1990, 38(9): 1639-1641.
  • 9Shi Y, Karl W C. A fast level set method without solving PDEs[C].Proc IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, PA, USA: [s. n. ], 2005, 2: 97-100.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部