期刊文献+

SVM中基于距离的减样方法 被引量:3

Sample Decreasing Method Based on Distance in SVM
下载PDF
导出
摘要 给出一种基于距离的减样方法,称为三步减样法(Three-step desampling method,TSDM)。根据概率论的知识定位定量分析了噪点及多余样本点的一般比例情况。在应用时根据样本间的距离分三步进行减样:即根据样本点的分布情况选择三个阈值,分别进行精减(除噪)、内减和外减以便提取具有代表性的边界向量。三个阈值可采取正交实验设计或二分法确定。试验结果表明该方法与标准SVM相比一般能保持或提高分类精度;对于大样本来说不仅能保持精度不减,而且还能较大地提高分类速度,具有较强的实用性。 A sample decreasing method is presented based on the distance, called the three-step desampling method (TSDM). The general proportion case of the noisy points and excrescent sample points in locality and quantity are analyzed according to probability theory. The sample points are reduced in three steps by the distance in application: three thresholds are chosen based on the distribution case of sample points, and then the meticulous decrease (denoise), inner decrease and outer decrease are performed to extract the representative boundary vectors. The three thresholds are chosen by using orthogonal design or bisection method. Compared with the standard support vector machine (SVM), experiments show the efficiency of the method. The method can keep or improve classification accuracy in general and can enhance classification speed for large scale sample, thus having stronger practicability.
出处 《数据采集与处理》 CSCD 北大核心 2008年第3期333-337,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60574075)资助项目
关键词 距离 噪点 减样 小概率原理 支持向量机(SVM) distance noisy point decrease sample small probability principle support vectormachines (SVM)
  • 相关文献

参考文献14

  • 1Vapnik V. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks, 1999, 10(5) : 988-999.
  • 2Dung N D, Ho T B. A bottom-up method for simplilying support vector solutions [J]. IEEE Transactions on Neural Networks, 2006,17(3) :792-796.
  • 3Downs T, Gates K E, Masters A. Exact simplification of support vector solutions[J]. Journal of Machine Learning Research, 2001 (2) : 293-297.
  • 4Chang C C, Lee Y J. Generating the reduced set by systemtic sampling, IDEAL2004[C]//Lecture Notes in Computer Science. Berlin:Springer, 2004,3177: 720-725.
  • 5Abe S, Inoue T. Fast training of SUPPORT vector machines by extracting boundary[C]//Lecture Notes in Computer Science. Berlin.. Springer, 2001,213:308-313.
  • 6Li Y G, Hu Z H, Cai Y Z, et al. Support vector based prototype selection method for nearest neighbor rules[C]//Lecture Notes in Computer Science. Berlin : Springer, 2005,3610:528-535.
  • 7李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 8Li B Q. Distance-based selection of potential spport vector by kernel matrix[C]//Lecture Notes in Computer Science. Berlin: Springer, 2004, 3173: 468- 473.
  • 9Tax D M J, Duin R P W. Outlier delection using classifier instability[C]//Lecture Notes in Computer Science. Berlin :Springer . 1998,1451 : 593-601.
  • 10Chen L, Huang J, Gong Z H. An anti-noise text categorization method based on support vector machines [C]//Lecture Notes in Artificial Intelligence. Berlin : Springer, 2005,3528 : 272-278.

二级参考文献9

  • 1Hearst M.A., Dumais S.T., Osman E., Platt J., Scholkopf B.. Support vector machines. IEEE Intelligent Systems, 1998, 13(4): 18~28
  • 2Vapnik V.N.. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988~999
  • 3Vapnik V.N.. Statistical Learning Theory.2nd ed..New York: Springer-Verlag, 1999
  • 4Müller Klaus-Robert, Mika Sebastian, Rtsch Gunnar, Tsuda Koji, Schlkopf Bernhard. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181~201
  • 5Burges C.J.C.. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121~167
  • 6Ke Hai-Xin,Zhang Xue -Gong.Editing support vector machines. In: Proceedings of the International Joint Conference on Neural Networks, Washington, DC, 2001, 2: 1464~1467
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 8张鸿宾,孙广煜.近邻法参考样本集的最优选择[J].电子学报,2000,28(11):16-21. 被引量:8
  • 9李红莲,王春花,袁保宗.一种改进的支持向量机NN-SVM[J].计算机学报,2003,26(8):1015-1020. 被引量:71

共引文献132

同被引文献25

  • 1汪西莉,焦李成.一种基于马氏距离的支持向量快速提取算法[J].西安电子科技大学学报,2004,31(4):639-643. 被引量:21
  • 2郑宇杰,杨静宇,吴小俊,於东军.基于独立成分分析和模糊支持向量机的人脸识别方法[J].系统仿真学报,2005,17(7):1768-1770. 被引量:13
  • 3袁平,毛志忠,王福利.基于多支持向量机的软测量模型[J].系统仿真学报,2006,18(6):1458-1461. 被引量:18
  • 4邓乃阳,田英杰.数据挖掘中的新方法-支持向量机.科学出版社,北京,2004.
  • 5Vapnik V N.The nature of statistical learning theory. New York : Springer Verlag,1995:30-90.
  • 6Cortes C, Vapnik V N.Support vector networks. Machine Learning, 1995,20: 272-297.
  • 7Hwanjo Yu, Jiong Yang, Jiawei Han. Classifying Large Data Sets Using SVMs with Hierarchical Clusters. SIGKSS'03 Washington DC,USA.2003.
  • 8KIM C J, HWANG K B. Naive Bayes classier learning with feature selection for spam detection, in social bookmarking [ C ]//Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2008.
  • 9LIU Xiao-zhang, FENG Guo-can. Kernel bisecting K-means cluste- ring for SVM training sample reduction[ C]//Proc of the 19th Interna- tional Conference on Pattern Recognition. 2008:1-4.
  • 10XU Yan-zi, QIN Hua. A new optimazation method of large-scale SVMs based on kernel distance clustering[ C]//Proc of International Computational Intelligence and Software Engineering. 2009:1-4.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部