期刊文献+

泵控缸电液位置伺服系统的神经网络模型参考自适应控制

Neural Network Model Reference Adaptive Control of Electro-hydraulic Position Servo System of Pump-controlled Cylinder
下载PDF
导出
摘要 针对泵控缸电液位置伺服系统的跟踪控制问题,提出了神经网络模型参考自适应控制方法。泵控缸电液位置伺服系统由于其自身特性以及外界干扰因素的影响存在严重的非线性,因此,很难采用传统的控制方法来控制。为此,首先利用GA-BP算法离线辨识伺服系统的神经网络模型,得到网络参数的初值,然后利用改进的BP算法在线对网络参数进行微调,以得到较为准确的网络预测输出,从而为在线神经网络控制提供较准确的梯度信息。仿真结果表明,该方法能保证系统具有较快的响应速度和较高的控制精度,并具有较好的自适应性和鲁棒性。 A neural network model reference adaptive control approach was proposed for tracking control problems of the electrohydraulic position servo system of the pump-controlled cylinder. Since the system presents a severe nonlinearity due to its own characteristics and external interfering factors, it is difficult to get a satisficd control effect by a conventional method. In order to get exact forecasted output of network and gradient information used for the neural network control, the GA-BP was used to optimize the values of weights and thresholds off-line, and an optimized initial value was obtained. The modified BP algorithm was applied to find out an optimal values on-line. The simulation results show that the proposed approach guarantees the response speed and accuracy, which possesses a good self-adaptive and strong robust.
出处 《机床与液压》 北大核心 2008年第6期110-112,共3页 Machine Tool & Hydraulics
关键词 泵控缸 神经网络模型参考自适应控制 GA—BP 自适应性 鲁棒性 Pump-controlled cylinder Neural network model reference adaptive control GA-BP Self-adaptive Robust
  • 相关文献

参考文献8

  • 1G Vossoughi. Nonlinear Analysis and Control of Electrohydraulic Servo System [ C ]. Proceedings of the 2nd Biennial European Joint Conference on Engineering Systems Design and Analysis, New York: 1994:59-67.
  • 2S Bennett. Brief History of Servomechanisms [ J]. IEEE Control System Magazine, 1994, 14: 75-79.
  • 3S Tomonobu, K Tomohiro, U Katsumi. Position Control of Ultrasonic Motors Using MRAC and Dead-zone Compensation with Fuzzy Inference [ J ]. IEEE Transaction on Power Electronics, 2002, 17:265-272.
  • 4D E Miller. A New Approach to Model Reference Adaptive control [ C ]. Proceeding of the American Control Conference, Anchorage, American, 2002:2929-2934.
  • 5徐志成,张建明,苏成立,王树青.基于微粒群优化的模型参考自适应控制[J].高技术通讯,2006,16(3):262-266. 被引量:1
  • 6J S Phuah, J M Lu, T Yahagi. Model Reference Adaptive Control for Multi-input Multi-Output Nonlinear Systems Using Neural Networks [ C]. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003 : 12 - 16.
  • 7张秀玲.神经网络非线性系统模型参考自适应控制器统一设计法[J].控制与决策,2002,17(2):151-154. 被引量:10
  • 8Gao Q, Qian L F, Wang Y S, Hou Y L, Wang L Model Identification of an Electro-Hydraulic Position Servo System Based on the Evolutionary Neural Network [ C ]. Proceedings of ICMEM 2007 International Conference on Mechanical Engineering and Mechanics, Wuxi, China, 2007. 1 : 704 - 708.

二级参考文献16

  • 1张立明.人工神经网络的模型及应用[M].上海:复旦大学出版社,1992..
  • 2施阳 李俊 等.MATLAB语言工具箱--TOOLBOX实用指南[M].西北工业大学出版社,1999..
  • 3Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through Particle Swarm Optimization.Natural Computing,2002,3(1):235-306
  • 4Millonas M M.Swarms,Phase Transition,and Collective Intelligence.MA:Addison Wesley,1994
  • 5Deng X S,Popovic D,Schulz_ Ekloff G.Real-time identification and control of a continuous stirred tank reactor with neural network.In:Proceedings of IEEE International Conference On Industrial Automation and Control,Hyderabad,1995.67-70
  • 6David L.Handbook of Genetic algorithms.New York:Van Nostrand Reinhold,1991
  • 7Michalewics Z.Genetic algorithms and optimal control problem.In:Proceedings of the twenties-ninth IEEE Conference On Decision and Control,Hawaii,1999.1664-1666
  • 8Kennedy J,Eberhart R C.Particle Swarm Optimization.In:Proceedings of IEEE International Conference on Neural Networks,Perth,1995.1942-1948
  • 9Shi Y H,Eberhart R C.A modified particle swarm optimizer.In:Proceedings of IEEE Conference on Evolutionary Computation,Anchorage,1998.303-308
  • 10Eberhart R C,Shi Y H.Particle swarm optimization:Developments,applications and resources.In:Proceedings of IEEE International Conference On Evolutionary Computation,Seoul,2001.81-86

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部