期刊文献+

MOS器件二次击穿行为的电路级宏模块建模 被引量:1

A Model of MOSFET’s Second Breakdown Action in Circuit-Level
下载PDF
导出
摘要 采用一种利用TCAD仿真提取MOS器件在静电放电现象瞬间大电流情况下的电学参数,对MOS器件二次击穿行为进行电路级宏模块建模。MOS器件是一种重要的静电放电防护器件,被广泛地应用为集成电路输入输出口的静电保护器件。用TCAD仿真工具对MOS器件的二次击穿进行宏模块建模,该模型能够正确反映MOS器件二次击穿的深刻机理,具有良好的精确性和收敛性,这对在电路级以及系统级层面上仿真静电放电防护网络的抗静电冲击能力有重要意义。 A method to exact the electrical parameters and model the second breakdown action of MOSFET's under ESD (Electro-Static Discharge) on circuit-level, using TCAD simulation, is presented. MOSFET is one of the most important ESD protection devices, and is widely used as I/O protection device in imegrated circuits. We pres- ent an accurate macro model of the MOSFET based on deep analyzing of the physical mechanism of the second breakdown, using TCAD simulation. This macro model owns fine convergency and accuracy which are of importance to the simulation of the ESD protection ability of the ESD protection network on circuit and system level.
出处 《传感技术学报》 CAS CSCD 北大核心 2008年第2期361-364,共4页 Chinese Journal of Sensors and Actuators
基金 浙江省新苗人才计划资助(“XinMiao Project of Science and Technology Department of Zhejiang Province”) 浙江省自然科学基金资助项目(Zhejiang Province Natural Science Foundation)(Y107055)
关键词 MOS 二次击穿 电路级 宏模块 建模 MOS second breakdown circuit-level macro block modeling
  • 相关文献

参考文献8

  • 1Zhang X Y.Modeling and Characterization of Substrate Resistance for Deep Submicron ESD Protection Devices[D].US.A:Stanford University,August 2002.
  • 2Amerasekera A,van Roozendaal,Bruines J,and Kuper F.Characterization and Modeling of Second Breakcbwn in NMOST's for the Extraction of ESD-Related Process and Design Parameters[J].IEEE Transactions∞Electro Devices,1991,38(9);2161-2168.
  • 3Ajith Amerasekera,Charvaka Duvvury,Warren Anderson,Horst Gieser,and Sridhar Ramaswamy,ESD in Silicon Integrated Circuits[M].Edition 2,JOHN WILEY and SONS,2002:350-389.
  • 4Javier A Salcodo,Juin J Liou,Zhiwei Liu,and James E Vinson,TCAD Methodology for Design of SCR Devices for Electrostatic Discharge(ESD)Applications[J].IEEE Trans.Electron Devices,2007,54(54):822-832.
  • 5Tremouilles D,Bertrand G,Bafleur M,Beaudoin F,Perdu P,and Lescouzeres L.TCAD and SPICE Modeling Help Solve ESD Protection Issues in Analog CMOS Technology[C]//Mieroelectronics,2002.MIEL 2002.23rd International Conference on,2:749-752.
  • 6Salamero C,Nolhier N,Gendron A,Befleur M,Besse P,and Zecri M.TCAD Methodology for ESD Robustness Prediction of Smart Power ESD Devices[J].IEEE Trans.Device and Materials Reliability,2006,6(6):399-407.
  • 7Ameraseker A,Chatterjee.A,and Chang M.-C.,Prediction of ESD Robustness in a Process using 2D Device Simulations[C]//Reliability Physics Symposium,2:161-167.
  • 8Salamero C.,Nolhier N.,Bafleur M.,and Besse P.,Effidem TCAD Methodology for ESD Failure Current Prediction of Smart Power ESD Protection[C]//Proceeding of 7th International Symposium on Power Semiconductor Devices and ICs,2:115-118.

同被引文献26

  • 1Jungemann C,Pham A T, Meinerzhagen B. Stable Discretization of the Boltzmann Equation Based on Spherical Harmonics, Box Integration, and a Maximum Entropy Dissipation Principle [J]. Journal of Applied Physics ,2006,100 ( 2 ) :024 502-024502-13.
  • 2Rupp K. Numerical Solution of the Bohzmann Transport Equation using Spherical Harmonics Expansions [ D ]. Dissertation of Master, Vienna University of Technology,2011.
  • 3Rupp K, Jtingel A, Grasser T. Matrix Compression for SphericalHarmonics Expansions of the Boltzmann Transport Equation for Semiconductors [ J ]. Journal of Computational Physics, 2010,229 (23) :8750-8765.
  • 4Hong S M ,Jungemann C, BoUhfifer M. A Fully Coupled Scheme for a Boltzmann-Poisson Equation Solver Based on a Spherical Harmonics Expansion [ J ]. Journal of Computational Electronics, 2009,8 ( 3 ) :225-441.
  • 5Jungemann C, Meinerzhagen B. Analysis of the Stochastic Error of Stationary Monte Carlo Device Simulations [ J ]. IEEE Trans. Electron Devices ,2001,48 ( 5 ) :985-992.
  • 6Vecchi M C, Rudan M. Modeling Electron and Hole Transport with Full-Band Structure Effects by Means of the Spherical-Harmonics Expansion of the BTE[ J]. IEEE Trans. Electron Devices, 1998,45 ( 1 ) :230-238.
  • 7Rahmat K, White J, Antoniadis D A. Simulation of Semiconductor Devices Using a Galerkin/Spherical Harmonic Expansion Approach to Solving the Coupled Poisson-Bohzmann System [ J ]. IEEE Trans. Computer-Aided Design of Integrated+ Circuits and Systems, 1996,15(10) :1181-1196.
  • 8Jungemann C, Hong S M, Matz G. High-Order Spherical Harmonics Solution of the Bohzmann Equation and Noise Modeling [ C ]//In- ternational Workshop on Computational Electronics (IWCE), 2010 : 1-6.
  • 9Wu ~ J Hennacy K, Goldsman N, Mayergoyz l.Two Dimensional Submicron MOSFET Simulation Using Generalized Expansion Method and Fixed Point Iteration Technique to the Boltzmaun Transport Equation [ C ]//VLSI Technology, Systems, andApplications, Proceedings of Technical Papers, 1995 : 122-126.
  • 10Ventura D, Gnudi A, Baccarani G. Multidimensional Spherical Harmonics Expansion of Bohzmann Equation for Transport in Semi- conductors [ J ]. Applied Mathematics Letters, 1992,5 (3) :85-90.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部