期刊文献+

水平剪切声板波的激发机理及其特性研究

Study on Excitation Mechanism and Characteristics of Shear-Horizontal Acoustic Plate Mode Wave
下载PDF
导出
摘要 水平剪切声板波(SH-APM)是在板状固体结构中传播的一种声波,其质点振动垂直于传播方向和界面法线。针对SH-APM的激发机理和激发特性两个方面展开研究。首先通过分析压电介质的Christoffel方程组解耦情况来研究SH-APM的激发机理,推导出为了在压电板上激发出SH-APM,压电基片的材料常数所必须满足的条件;然后在此基础上,建立了SH-APM器件的理论分析模型,并以PZT-5H压电陶瓷为例,研究了SH-APM的激发特性,包括激发模态、传播速度、激发效率、振动位移等;最后,通过实验以及理论计算与相关文献对比,证明了理论模型的正确性及研究结果的有效性。 Shear-horizontal acoustic plate mode wave (SH-APM) propagates in the plate, which has particle displacement normal to the propagation direction and parallel to the plate surface. This paper focuses on the excitation mechanism and characteristics of SH-APM. Firstly, the decoupling status of Christoffel equations of piezoelectric medium is analyzed for the purpose of studying the excitation mechanism of SH- APM. In order to excite SH-APM in the piezoelectric plate, some conditions concerning the material constants of the piezoelectric substrate are derived. Next, the theoretical analysis model of SH-APM device is established, accordingly. Using PZT-5H piezoelectric ceramic as an example, the excitation characteristics of SH-APM are investigated, including excitation modes, propagation velocity, excitation efficiency, and vibration displacement, etc; Lastly, by experiment and comparison between theoretical calculation and corresponding reference, the validity of the theoretical models and the practicability of the research results are verified.
出处 《传感技术学报》 CAS CSCD 北大核心 2008年第5期896-902,共7页 Chinese Journal of Sensors and Actuators
基金 浙江省自然科学基金资助(Y105320)
关键词 水平剪切声板波 激发机理 激发特性 压电陶瓷 shear - horizontal acoustic plate mode wave excitation mechanism excitation characteristics piezoelectric ceramic
  • 相关文献

参考文献10

  • 1Michael T, David C S. Surface-Launched Acoustic Wave Sensors [M]. New York:Wiley-Interscience Publication, 1997.
  • 2Ballantine D S, Martin S J, Ricco A J, et al. Acoustic Wave Sensors, Theory, Design, and Physico-Chemical Applications [M]. San Diego: Academic Press, 1997.
  • 3Herrmann F, Jakoby B, Rabe J. Microacoustic Sensors for Liquid Monitoring [J]. Sensors Update, 2001, 9 (2): 105- 160.
  • 4Kondoh J, Shiokawa S. Shear Horizontal Surface Acoustic Wave Sensors [J]. Sensors Update, 1999, 6 (1): 59-78.
  • 5Yamazaki T, Kondoh J, Matsui Y, et al. Estimation of Components and Concentration in Mixture Solutions of Electrolytes Using a Liquid Flow System with SH-SAW Sensor [J]. Sensors and Actuators, A: Physical, 2000, 83 (1): 34-39.
  • 6Kondoh J, Muramatsu T, Nakanishi T, et al. Development of Practical Surface Acoustic Wave Liquid Sensing System and Its Application for Measurement of Japanese Tea[J]. Sensors and Actuators, B:Chemical, 2003, 92 (1-2):191-198.
  • 7李良儿,俞红杰,沈晓群,施文康.解耦的声表面波波动方程的求解[J].传感技术学报,2005,18(1):205-208. 被引量:9
  • 8Fang H Y, Yang J S, Jiang Q. Rotation-perturbed Surface A coustic Waves Propagating in Piezoelectric Crystals [J]. Inter national Journal of Solids and Structures, 2000, 37 (36) :4933-4947.
  • 9[美]J.L.罗斯著.何存富,吴斌,王秀彦译.固体中的超声波[M].北京:科学出版社,2004:43-65.
  • 10Auld B A. Acoustic Fields and Wave in Solids [M]. Florida: Krieger Publishing Company, 1990.

二级参考文献4

  • 1Fang H Y, Yang J S, and Jiang Q. Rotation-perturbed surface acoustics waves propagating in piezoelectric crystals[J]. Int. J. Solids Struct, 2000,37(36):4933-4947.
  • 2Zhou Y H and Jiang Q. Effects of Coriolis force and centrifugal force on acoustic waves propagating along the surface of a piezoelectric half-space, unpublished.
  • 3Fang H Y, Yang J S, Jiang Q. Rotation-perturbed surface acoustic waves propagating in piezoelectric crystals. International Journal of Solids and Structures 2000,37:4933-4947.
  • 4水永安.声表面波与声表面波器件(讲义)[Z].南京:南京大学声学所,1998..

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部