期刊文献+

含Wallis公式的双边不等式的一个新证明 被引量:1

A New Approach to Prove a Two-sided Inequality Involving Wallis's Formula
下载PDF
导出
摘要 利用数列的单调收敛性得到一个含Wallis公式的更精细的双边不等式. A sharper and more concise two-sided inequality involving Wallis's formula is obtained on the basis of the numerical sequence's property of monotone and convergence.
作者 应玮婷
出处 《台州学院学报》 2008年第3期1-3,23,共4页 Journal of Taizhou University
关键词 WALLIS公式 不等式 单调数列 Wallis's formula inequality monotonic sequence
  • 相关文献

参考文献2

二级参考文献9

  • 1赵德钧.关于含有Wallis公式的双边不等式[J].数学的实践与认识,2004,34(7):166-168. 被引量:12
  • 2MitrinovicDS VasicPM 赵汉宾.分析不等式[M].南宁:广西人民出版社,1986..
  • 3KAZARINOFF D K.On Wallis' formula[J].Edinburgh Math Notes,1956,40(1):19-21.
  • 4KAZARINOFF N D.Analytic Inequalities[M].New York:Holt,Rhinehart and Winston,1961.
  • 5ABRAMOWITZ M,STEGUN I A.Handbook of mathematical functions with formulas graphs and mathematical tables[C]//National Bureau of Standards Applied Mathematics Series 55.New York:Dover,1972.
  • 6ALZER H.On some inequalities for the gamma and psi functions[J].Math Comp,1997,66(2):373-389.
  • 7CHEN C P,QI F.A new proof of the best bounds in Wallis' inequality[J].RGMIA Res Rep Coll,2003,6(2):19-22.
  • 8CHEN C P,QI F.The best bounds in Wallis' inequality[J].Proceedings of the American Math Society,2004,133(2):397-401.
  • 9徐利治,罗笑南.On a Two-sided Inequality Involving Stirling's Formula[J].Journal of Mathematical Research and Exposition,1999,19(3):491-494. 被引量:6

共引文献11

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部