摘要
本文主要处理非局部波动方程组解的全局存在与爆破问题,考虑如下非局部波动方程组的初值问题:3。所有这些初值函数都为连续的且fi(x)+gi(x)0,i=1,2,3。根据对称性,本文假定p1≤p2≤p3。
In this paper, we mainly deal with global existence and blow-up solutions for systems of nonlocal wave equations with, we consider the initial value problem for a system of nonlocal wave equations {δ^2u1/δt^2=δ^2u1/δx^2+‖u2(·,t)‖p1,δ^2u2/δt^2+‖u3(·,t)‖p2,δ^2u3/δt^2=δ^2u3/δx^2+‖u1(·,t)‖p3,-∞〈x〈∞,t〉0 ui(x,0)=fi(x),δui/δt(x,0)=gi(x),i=1,2,3,-∞〈x〈∞ where 0〈p1,p2,p3〈+∞,‖ui(·,t)‖=∫-∞^+∞ φi(x)|u(x,t)|dx,i=1,2,3.where φi(x)≥0 and ∫-∞^+∞ φi(x)dx=1,i=1,2,3.All of the initial values are continuous and |fi(x)|+|gi(x)|absolotely unequalto 0,i=1,2,3.By symmetry, we assume p1≤p2≤p3.In this paper we prove the solutions of (1) is global existence with the condition 0 〈 p2p3 ≤ 1 ;While the solutions of (1) is blowing-up with the condition, p1≥ 1 ,p1p2p3 ≤ 1 ;While the solutions of (1)is blowing-up with the condition p1≥1 ,p1p2p3〉 1.
出处
《武夷学院学报》
2008年第2期18-23,共6页
Journal of Wuyi University
关键词
非局部
波动方程
全局存在
爆破
Nonlocal
Wave equation
Global existence
Blow-up