期刊文献+

大坝变形非线性智能组合预测方法研究 被引量:1

Nonlinear agent combined forecasting model for dam deformation
下载PDF
导出
摘要 为同时利用不同大坝变形预测方法的特征信息,改进预测质量,提出了一种基于微粒群优化—支持向量机(PSO-SVM)的大坝变形非线性智能组合预测模型。选取几种不同原理的建模方法建立预测模型并预测,利用其预测结果建立组合预测模型,组合函数的拟合采用混合核函数支持向量回归算法。为提高SVM的学习、泛化能力,采用混合核函数,并用具有并行性和分布式特点的PSO算法优化选择SVM模型参数。实例分析表明,该模型较好地整合了不同建模方法的特征信息,避免了单一方法的偶然性,较单一预测模型、加权组合预测模型具有更高的预测精度和更小的峰值误差,为更准确地进行大坝安全监控提供了一种新的途径。 In order to use the characteristic information of different modeling methods sufficiently and improve the quality of prediction result, a nonlinear combining forecasting model for dam deformation forecasting based on support vector machines with particle swarm optimization was presented in this paper. Firstly, predicting the prediction variable separately by several different modeling methods, then the nonlinear agent combined forecasting model was built using the prediction results, and the combinatorial function was got through support vector machines. In the interest of improving the forecasting accuracy, support vector machines which using a mixed kernel function was used, and the parameters of SVM were selected by PSO algorithm which had the characteristics of parallel and distributing. The new model is used to dam deformation medeling and forecasting, result show that the model combine the characteristic information of different modeling methods very well. Comparing with single predicting model and regressive combining model, the PSO -SVM combining model has the highest prediction precision and the smallest peak error, thus a new approach for dam safety monitoring is provided.
出处 《四川建筑科学研究》 北大核心 2008年第3期129-132,171,共5页 Sichuan Building Science
关键词 大坝变形监控 微粒群优化 支持向量机 混合核函数 智能组合预测 dam deformation monitoring particle swarm optimization support vector machines mixed kernel function agent combined forecasting
  • 相关文献

参考文献13

二级参考文献43

  • 1张国平.B—G组合预测理论剖析[J].预测,1988,7(5):22-25. 被引量:27
  • 2彭慧中.关于加权平均预测的条件[J].预测,1986,5(5):21-22. 被引量:2
  • 3孔庆凯.平均预测法的应用条件[J].预测,1985,4(5):18-21. 被引量:12
  • 4冯夏庭,王泳嘉,卢世宗.边坡稳定性的神经网络估计[J].工程地质学报,1995,3(4):54-61. 被引量:116
  • 5Takagi H, Hayashi I. NN_driven Fuzzy Reasoning [J]. Int Journal of Approximate Reasing, 1991, 15:191 - 213.
  • 6Bakirtzis A G, Theocharis J B, Kiartzis S J, et al. Short term load forecasting using fuzzy neural networks[J].IEEE Transactions on Power Systems. 1995, 10 (3): 1518-1 524.
  • 7Kiartzis S J, Bakirtzis A G, Petridis V. Short-term load forecasting using neural networks[J]. Electric Power Systems Research, 1995, 33 (1) : 1-6.
  • 8Kim K H, Park J K, Hwang K J, ct al. Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems[J]. IEEE Transactions on Power Systems. 1995, 10 (3): 1534-1539.
  • 9Maifeld T, Sheblc G. Short-term load forecasting by a neural network and a refined genetic algorithm [J].Electric Power Syatems Research, 1994, 31 (3): 147-152.
  • 10Chou Jung-Huai. Genetic algorithm in structural damage detection[J]. Computers & structures, 2001, 79 (14):1 335-1 353.

共引文献143

同被引文献28

  • 1周志明,陈敏.支持向量机的人脸识别方法[J].咸宁学院学报,2003,23(3):19-22. 被引量:2
  • 2王华忠,俞金寿.基于混合核函数PCR方法的工业过程软测量建模[J].化工自动化及仪表,2005,32(2):23-25. 被引量:11
  • 3王华忠,俞金寿.混合核函数PLS建模方法及在软测量中的应用[J].计算机与应用化学,2007,24(2):239-242. 被引量:17
  • 4M Aizerman,Braverman,L Rozonoer. Theoretical foundations ofthe potential function method in pattemrecognition learning [ J ].Automation and Remote Control, 1964,25:821-837.
  • 5G F Smits, E M Jordaan. Improved SVM regression using Mixturesof Kernels[ C]. Proceedings of the 2002 International Joint Confer-ence on Neural Networks, Hawaii, 2002:2785-2790.
  • 6P Tiwari, J Kurhanewicz, A Madabhushi. Multi-kernel graph em-bedding for detection, Gleason grading of prostate cancer via MRI/MRS[ J]. Medical Image Analysis, 2013 ,17(2) :219-235.
  • 7H Kwon, N M Nasrabadi. Kernel RX- Algorithm : a nonlinear a-nomaly detector for hyper-spectral imagery[ J]. IEEE Trans. Ge-oscience and Remote Sensing, 2005,43(2) ; 388-397.
  • 8A Barla, F Odone and A Verri. Histogram intersection kernel forimage classification[ C]. Proceedings of the International Confer-ence on Image Processing, Barcelona, Catalonia, Spain, 2003 -2:513-516.
  • 9V Mottl, 0 Krasotkina, 0 Seredin, I Muchnik. Principles ofMulti-kernel Data Mining [ C ]. 4th International Conference onMachine Learning and Data Mining in Pattern Recognition,Leip-zig, Germany, 2005,3587 : 52-61.
  • 10AM Alvarez-Meza, et al. Video Analysis Based on Multi-KernelRepresentation with Automatic Parameter Choice [ J ]. NeuralComputing, 2013,100:117-126.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部