期刊文献+

挡风抑尘墙多孔介质模型分析与数值模拟 被引量:4

Numerical Simulation and Analysis of Porous Medium Model for Wind-Proof and Suppressing Wall
下载PDF
导出
摘要 气体通过挡风抑尘墙的流动是典型的多孔介质.纯流体耦合流动,多孔介质模型能够良好的反映其工作特性。墙体的质量通量和压力降与墙体开孔率、高度及自然风速有直接的关系,随着开孔率的增大,其质量通量增大,压力降减小;随着墙体高度的增大,其质量通量也增大,压力降增大;随着自然风速的提高,其质量通量也增大,压力降增大。较适宜的墙体高度为受保护料垛高度的1.5~2倍,开孔率为0.2~0.3。 The wind pass the wind-proof and suppressing wall is a typical porous media-fluid coupled flow, the porous medium model can show its working characters well. The opening ratio, the height of the wall and the velocity of the wind can influence the mass flow rate and pressure drop directly. The mass flow rate raise and the pressure drop decrease with the raise of opening ratio; The mass flow rate and pressure drop both raise with the raise of the wall height and the wind vdocity. The preferable height of the wall is about 1.5 to 2 times of the height of protected open-air depot, the preferable opening ratio is 0.2 to 0.3.
出处 《烧结球团》 北大核心 2008年第3期23-28,共6页 Sintering and Pelletizing
关键词 挡风抑尘墙 多孔介质模型 数值模拟 质量通量 压力降 wind-proof and dust suppressing wall, porous medium model, numerical simulation, mass flow rate, pressure drop
  • 相关文献

参考文献8

  • 1Prithiviraj M, Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchangers [ J] . 1998, 33 (8) :799 - 816,817 - 828
  • 2Patankar S V, Spalding D B. A calculation procedure for the transient and steady state behavior of shell-and-tube heat exchangers [ A ] . Afgan N F, Schlunder E V. Heat exchangers: Design and Theary Source Book [ C ]. New York McGraw- Hill, 1974. 155- 176
  • 3Sha W T, Yang C I, Kao T T, Cho S M. Multidimensional numerical modeling of heat exchangers[J]. J . Heat Transfer, 1982,104:417 - 425
  • 4Karayannis N, Markatos N C G. Mathematical modeling of heat exchangers[ A]. Berryman R J. Proceedings of the Tenth International Heat Transfer Conference[ C], Brighton, U K, The Industrial Sessions Papers, 13- 18,1994
  • 5Huang L Y,Wen J X, Karaynannis T G, Mathews R D. CFD modeling of fluid flow and heat transfer in a shell-and-tube heat exchanger[J]. Phoenics J. CFD Appl, 1996,9(2) : 189 -209
  • 6范爱武,刘伟,李光正.非饱和多孔介质中耦合传输过程的改进模型[J].华中科技大学学报(自然科学版),2006,34(1):8-10. 被引量:6
  • 7陶文铨.计算流体力学[M].北京:中国建筑工业出版社,1991.
  • 8Launderh B E, Spalding D B. The numerical computation of turbulence flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974,16 (3) :2692289

二级参考文献12

  • 1Dybbs A, Schweitzer S. Conservation equation for nonisothermal flow in porous media[J]. J Hydrology, 1973, 20: 171-180.
  • 2Ilic M, Turner i W. Convective drying of a consolidated slab of wet porous material[J]. Int J Heat Mass Transfer, 1989, 32(12):2 351-2 362.
  • 3Liu W, Peng S W, Mizukami K. A general mathematical modeling for heat and mass transfer in unsaturated porous media: an application to free evaporative cooling[J]. Heat and Mass Transfer, 1995, 31:49-55.
  • 4Haridasan M, Jensen R D. Effect of temperature on pressure head-water content relationship and conductivity of two soils [J]. Soil Sci SOc Amer J,1972, 36: 703-708.
  • 5Philip J R. The theory of infiltration: sorptivity and algebraic infiltration equations [J]. Soil Science,1957, 84: 257-264.
  • 6Whitaker S. Simultaneous heat, mass and momentum transfer in porous media:a theory of drying [M].New York: Academic Press, 1977.
  • 7Slattery J C. Two-phase flow through porous media[J]. AICHE J, 1970, 16(3). 5-12.
  • 8Giakoumakis S G, Tsakiris G P. Eliminating the effect of temperature form unsaturated soil hydraulic functions[J]. J Hydrology, 1991, 129:109-125.
  • 9Sherwood T K. The drying of solids[J]. Ind Eng Chem, 1929, 21: 12-16.
  • 10Philip J R, De Vries D A. Moisture movement in porous materials under temperature gradients [J].Trans Am Geophys Union, 1957, 38:222-232.

共引文献16

同被引文献50

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部