期刊文献+

一种高效的并行频繁集挖掘算法 被引量:7

Efficient Parallel Frequent Itemsets Mining Algorithm
下载PDF
导出
摘要 针对Apriori算法在挖掘超大规模数据集时存在的效率低下问题,在数据集分块和事务数据库布尔化映射基础上,提出一种直接利用布尔矩阵向量运算挖掘频繁集的并行频繁集挖掘算法(PFIM)。仿真实验分析表明,PFIM算法比Apriori算法的挖掘时间缩短了近90%,该方法可用于挖掘超大规模数据库,具有良好的并行性和可伸缩性。 Aiming at inefficient problem of Apriori algorithm when mining very large database, this paper presents an efficient Parallel Frequent Itemset Mining algorithm(PFIM) based on database dividing and computing of Boolean matrix mapped from original database. Experimental results show that PFIM algorithm cuts down ninety percent mining time of Apriori, so it is suitable for mining very large size database and it has good characteristics of parallel and expandable.
作者 张诤 王惠文
出处 《计算机工程》 CAS CSCD 北大核心 2008年第11期55-57,60,共4页 Computer Engineering
基金 国家创新研究群体科学基金资助项目(70521001)
关键词 频繁集 关联规则 并行计算 frequent itemset association rule parallel computing
  • 相关文献

参考文献6

  • 1Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database[C]//Proceedings of ACM SIGMOD International Conference on Management of Data. Washington, D. C., USA: [s. n.], 1993.
  • 2Park J S, Chen M S, Yu P S. An Effective Hash Based Algorithm for Mining Association Rules[C]//Proceedings of ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 1995.
  • 3Pasquoer N, Bastide Y, Taouil R, et al. Discovering Frequent Closed Item Sets for Association Rules[C]//Proc. of ICDT'99. Jerusalem, Israel: [s. n.], 1999.
  • 4Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. Dallas, Texas, USA: ACM Press, 2000.
  • 5Pasquoer N, Bastide Y, Taouil R. Efficient Mining of Association Rules Using Closed Item Set Lattices[J]. Information System, 1999, 24(1): 25-46.
  • 6Berzal F, Cubero J C, Matin N. TBAR: An Efficient Method for Association Rule Mining in Relational Database[J]. IEEE Trans. on Data and Knowledge Engineering, 2001, 13(1): 47-64.

同被引文献60

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部