期刊文献+

粒子群算法求解任务可拆分项目调度问题 被引量:17

Particle swarm optimization for resource-constrained project scheduling problems with activity splitting
下载PDF
导出
摘要 首先针对任务可拆分的项目调度问题,提出一种带有局部搜索的粒子群算法LSPSO;然后采用基于任务排列的粒子表示方法,将遗传算法中的定位交叉引入粒子的更新过程中,并采用局部搜索技术对更新后的粒子进行改进;最后对Patterson测试集中110个问题实例进行了测试,实验结果表明,算法LSPSO具有较快的速度,所给出的调度方案较优. A local search particle swarm optimization (LSPSO) is proposed to solve the resource constrained project scheduling problem (RCPSP) with activity splitting. The LSPSO makes use of a permutation based particle representation and an updating mechanism with one-point crossover. Then, a local search technique is adopted to improve the quality of the updated particles. Finally, the algorithm is tested on the instance set Patterson, and the results show that the LSPSO is an alternative and efficient optimization methodology for solving the RCPSP.
作者 邓林义 林焰
出处 《控制与决策》 EI CSCD 北大核心 2008年第6期681-684,688,共5页 Control and Decision
基金 国家863计划项目(2003AA414060)
关键词 项目调度 资源受限 粒子群算法 可拆分任务 Project scheduling Resource-constrained Particle swarm optimization Activity splitting
  • 相关文献

参考文献14

  • 1Kolisch R, Hartmann S. Experimental investigation of heuristics for resource-constrained project scheduling: An update [J]. European J of Operational Research, 2006, 174(1):23-37.
  • 2Blazewicz J K, Lenstra A H G, Rinnooy Kan. Scheduling subject to resource constraints: Classification and complexity[J]. Discrete Applied Mathematics, 1983: 5(1): 11-24.
  • 3Buddhakulsomsiri Jirachi, David S K. Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting [J]. European J of Operational Research, 2006, 175 (1): 279-295.
  • 4Buddhakulsomsiri Jirachi, David S K. Priority rulebased heuristic for multi-mode resource-constrained project scheduling problems with resources vacations and activity splitting [J ]. European J of Operational Research, 2007, 178(2):374-390.
  • 5雒兴刚,汪定伟,唐加福.任务可拆分项目调度问题[J].东北大学学报(自然科学版),2006,27(9):961-964. 被引量:8
  • 6Eberhart R, Kenndy J. A new optimizier using particle swarm theory[C]. Proc of the 6th Int Symposium on Micro Machine and Human Science. New York: IEEE, 1995: 39-43.
  • 7Kennedy J, Eberhart R. Particle swarm optimization [C]. Proc of IEEE Int Conf on Neural Networks. New York: IEEE, 1995: 1942-1948.
  • 8Shi Y, Eberhart R. Parameter selection in particle swarm optimization[C]. Proe of the 7th Annual Conf on Evolutionary Programming. New York, 1998 : 591-600.
  • 9Zhang Hong, Li Heng, Tam C M. Particle swarm optimization for resource constrained project scheduling [J]. Int J of Project Management, 2006, 24(1): 83-92.
  • 10Zhang Hong, Li Xiao-dong, Li Heng. Particle swarm optimization-based schemes for resource-constrained project scheduling [J]. Automation in Construction, 2005, 14(3): 393-404.

二级参考文献10

  • 1徐华,于勇.一种实用的启发式资源平衡优化算法的改进[J].哈尔滨商业大学学报(自然科学版),2004,20(4):459-461. 被引量:4
  • 2Muth J F,Thompson G L.Industrial scheduling[M].Englewood Cliffs:Prentice Hall,1963.347-365.
  • 3Schirmer A.Resource-constrained project scheduling:an evaluation of adaptive control schemes for parameterized sampling heuristics[J].International Journal of Production Research,2001,39(7):1343-1365.
  • 4Franck B,Neumann K,Schwindt C.Truncated branch and bound,schedule construction,for resource-constrained project scheduling[J].OR Spektrum,2001,23(3):297-324.
  • 5Shtub A,Leblanc L J,Cai Z Y.Scheduling programs with repetitive projects:a comparison of a simulated annealing,a genetic and a pairwise swap algorithm[J].European Journal of Operational Research,1996,88(1):124-138.
  • 6Kolisch R.Serial and parallel resource-constrained project scheduling methods revisited:theory and computation[J].European Journal of Operational Research,1996,90:320-333.
  • 7Syswerda G.Handbook of genetic algorithms[M].New York:Van Nostrand Reinhold,1991.332-349.
  • 8Patterson J H.Comparison of exact approaches for solving the multiple constrained resource project scheduling problem[J].Management Science,1984,30(7):854-867.
  • 9刘士新,王梦光,唐立新,聂义勇.一种求解工程调度中时间/成本权衡问题的遗传算法[J].东北大学学报(自然科学版),2000,21(3):257-259. 被引量:9
  • 10刘士新,王梦光,唐加福.资源受限工程调度问题的优化方法综述[J].控制与决策,2001,16(B11):647-651. 被引量:23

共引文献7

同被引文献170

引证文献17

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部