期刊文献+

典型群的迹的矩 被引量:2

下载PDF
导出
摘要 设随机矩阵g属于群O(n),SO(n),Sp(n),g的分布是Haar分布,Diaconis和Shahshahani计算了g的迹的混合矩.本文给出另一种证明该矩公式的方法,这种方法就是把矩的计算转化为对称群不可约表示的特征标的和,然后用酉群不可约表示的特征标的Littlewood恒等式计算出这些和.
作者 冯志明
出处 《乐山师范学院学报》 2008年第5期12-13,共2页 Journal of Leshan Normal University
  • 相关文献

参考文献2

  • 1Michael Stolz. On the Diaconis-Shahshahani Method in Random Matrix Theory[J] 2005,Journal of Algebraic Combinatorics(4):471~491
  • 2L. Pastur,V. Vasilchuk. On the Moments of Traces of Matrices of Classical Groups[J] 2004,Communications in Mathematical Physics(1-3):149~166

同被引文献25

  • 1Diaconis P, Shahshahani M. On the eigenvalues of random matrices[J]. J Appl Probab,1994,A31:49-62.
  • 2Diaconis P. Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture[J]. Bull Am Math Soc,2003,40(2):155-178.
  • 3Hughes C P, Radnick Z. Mock Gaussian behaviour for linear statistics of classical compact groups[J]. J Phys,2003,A36:2919-2932.
  • 4Pastur L, Vasilchuk V. On the moments of traces of matrices of classical Groups[J]. Commun Math Phys,2004,252:149-166.
  • 5Stolz M. On the Diaconis-Shahshahani method in random matrix theory[J]. J Algebraic Combinatories,2005,22(4):471-191.
  • 6Dehaye P O. Averages over classical compact Lie groups, twisted by characters[J]. J Combinatorial Theory,2007,A114(7):1278-1292.
  • 7Collins B, Stolz M. Borel theorems for random matrices from the classical compact symmetric spaces[J]. Ann Probab,2008,36(3):876-895.
  • 8Novak J. Truncations of random unitary matrices and Young tableaux[J]. Electronic J Combinatorics,2007,14:1-21.
  • 9Jiang T F. How many entries of a typical orthogonal matrix can be approximated by independent normals[J]. Ann Probab,2006,34(4):1497-1529.
  • 10Jiang T F. The entries of Haar-invariant matrices from the classical compact groups[J]. J Theo Probab,2010,23(4):1227-1243.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部