期刊文献+

基于机器学习的水质COD预测方法 被引量:13

Water COD prediction based on machine learning
下载PDF
导出
摘要 运用紫外光谱进行水质有机污染物浓度(化学耗氧量(COD))的检测,必须建立紫外光谱数据与COD值之间的数学模型.运用机器学习方法中的LM-BP神经网络和支持向量机,建立了紫外多波段光谱数据与COD值的相关性模型,讨论了在LM-BP神经网络建模中网络结构选择、输入数据处理和训练程度控制,以及在支持向量机建模中核函数及其参数选择等问题.对某种水样的紫外多波段光谱,分别运用最小二乘法、LM-BP神经网络、支持向量机的相关性模型进行COD预测.结果表明,2种机器学习方法的预测能力明显优于最小二乘法,能够得到满意的预测精度,为运用物理方法解决化学量测量中普遍存在的相关性问题,提供了实际可行的解决方案. In order to measure the content of organic pollutants in water, i.e. chemical oxygen demand (COD) by UV spectral analysis, a mathematical model must be established between UV spectral data and COD value. Two machine learning methods, i.e. Levenberg Marquardt-back propagation (LM-BP) neural network and support vector machine (SVM), were used to build up a correlated model with UV multi- band absorbencies and actual COD values. The main courses of LM-BP neural network modeling, including model structure selecting, data processing and training controlling were discussed, also the selection method of SVM's parameters and model representations were studied. The COD value of the sample water was predicted by using three methods of LM-BP neural network, SVM and least-square procedure. The results indicate that the predictive ability of LM-BP neural network or SVM is better than that of least-square procedure. The two machine learning methods provide feasible solutions for the correlation problem widely existing in the chemical measurement using physical method.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第5期790-793,共4页 Journal of Zhejiang University:Engineering Science
基金 浙江省科技计划资助项目(2004C33069)
关键词 水质COD 机器学习 相关性模型 LM-BP神经网络 支持向量机 预测精度 water COD machine learning correlated model LM-BP neural network SVM accuracy pre-diction
  • 相关文献

参考文献8

二级参考文献37

  • 1王钰,郭其一,李维刚.基于改进BP神经网络的预测模型及其应用[J].计算机测量与控制,2005,13(1):39-42. 被引量:87
  • 2卢学强,梁雪慧,卢学军.神经网络方法及其在非线性时间序列预测中的应用[J].系统工程理论与实践,1997,17(6):97-99. 被引量:56
  • 3焦李成.神经网络系统导论[M].西安:西安电子科技大学出版社,1992..
  • 4VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 5VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 6SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 7SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 8CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 9LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.
  • 10SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines:robustness and spare approximation[J]. Neuroeomputing, 2002, 48(1): 85--105.

共引文献230

同被引文献147

引证文献13

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部