期刊文献+

一类双权退化椭圆算子的基本解及Hardy不等式

The fundamental solution and Hardy inequality for a class of degenerated elliptics operators with a double-weight
下载PDF
导出
摘要 首先建立了比广义Baoendi-Grushin向量场更为广泛的双权退化向量场构成的双权退化椭圆算子的基本解,然后通过构造适当的辅助函数,结合kombe的方法,证明了Hardy不等式. In this paper, the fundamental solution related to the degenerated elliptic operator constructed by the generalized double-weight vector fields which is much more than the generalized Baoendi-Grushin operator is established.Then the Hardy inequality is proved by improving Kombe's method and choosing a proper auxiliary function.
出处 《西南民族大学学报(自然科学版)》 CAS 2008年第3期410-414,共5页 Journal of Southwest Minzu University(Natural Science Edition)
基金 浙江省自然科学基金资助 项目编号为Y606144
关键词 双权退化向量场 双权退化椭圆算子 基本解 HARDY不等式 generalized double-weight vector field degenerated double-weight elliptic operator fundamental solution Hardyinequality
  • 相关文献

参考文献4

  • 1BAOUENDI M S. Sur une classe d‘ope'rateurs elliptiques d‘e'ge‘ne'rs[J]. Bull Soc Math France, 1967, 95: 45-87.
  • 2GUSHIN V V. On a class of hypoelliptic operators[J].Math. USSR Sbomik, 1970, 12( 3): 458-476.
  • 3王胜军,韩亚州.一类p-次双权退化椭圆算子及其边值问题的唯一性[J].西南民族大学学报(自然科学版),2007,33(5):997-1000. 被引量:1
  • 4LINDQVISTP. On the equation div(| u|^p-2 u)-λ|u|^p-2 u - 0 [J]. Proc Amer Math Soc,1990,109:157-164.

二级参考文献8

  • 1GAROFALO N.Isoperimetric and Sobolev inequalities for Carnot-Carnot-Carathe'odory spaces and the existence of minimal surfaces,Communications on Pure and Applied Mathematics,1996,49:1081-1144.
  • 2GAROFALO N.Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimention[J].Journal of Differential Equations,1993,104:117-146.
  • 3FRANCHI B,GUTIERREZ C,WHEEDEM R.Weighted Sobolev-Poincare inqualities for Grushin operator[J].Comm.P.D.E,1994,19(3&4):523-604.
  • 4FERNANDES J D,GROISMAN J,MELO S T.Harnack inquality for a class of degenerate elliptics operators[J].Zeitschrift fur analysis Und Ihre Anwendungen,2003,22(1):129-146.
  • 5KAWOHL B.Symmetry results for funcrtions yielding best constants in Sobolev-type inequalities[J].Discrete and Cont Dyn.Systems,2000,6:683-690.
  • 6BREZIS H,OLSWALD L.Remarks on sublinear problems[J].Nolin Anal,1986,10:55-64.
  • 7BAOUENDI M S.Sur une classe d'ope'rateurs elliptiques d'e'ge'ne'rs[J].Bull.Soc.Math.France,1967,5:45-87.
  • 8GUSHIN V V.On a class of hypoelliptic operators[J].Math.USSR Sbornik,1970,12(3):458-476.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部