期刊文献+

VHSR图像基于分割对象分类器性能评价 被引量:1

THE PERFORMANCE OF OBJECT-BASED CLASSIFIERS IN THE CLASSIFICATION OF VHSR IMAGE
下载PDF
导出
摘要 对比研究了平行六面体、最近邻分类法、最大似然法、神经网络等经典分类算法以及近年来新发展的支持向量机分类算法在基于分割对象的高分辨率遥感图像分类中的性能,详细分析了不同内积核函数对于支持向量机分类的影响。对两个试验区进行试验的结果表明,支持向量机分类算法分类精度得到明显改善,同时分类结果受参数、样本选择等影响较小,稳定性好。 The parallelepiped classifier (PC), minimum distance classifier (MDC), Maximum Likelihood Classifier (MLC), Neural network (NN) and, especially, the newly developed Support Vector Machines (SVM) were assessed in the object - based image analysis of VHSR data. The impacts of kernel configuration on the performance of the SVM and of the selection of training data of the four classifiers were also evaluated. The result reveals that SVM can improve the accuracy significantly, and is by far more stable than other algorithms in the classification of VHSR data based on OBIA.
出处 《国土资源遥感》 CSCD 2008年第2期30-34,I0004,共6页 Remote Sensing for Land & Resources
基金 中国地调局地质调查计划项目:全波段定量化遥感技术及其在资源环境中的应用研究(1212010660600)
关键词 基于对象图像分析 分类 IKONOS QUICKBIRD 高分辨率 SVM Object - based image analysis Classification IKONOS QuickBird High resolution SVM
  • 相关文献

参考文献10

  • 1苏伟,李京,陈云浩,张锦水,胡德勇,刘翠敏.基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例[J].遥感学报,2007,11(4):521-530. 被引量:113
  • 2Volker W. Object 2 Based Classification of Remote Sensing Data for Change Detection [ J ] . ISPRS Journal of Photogrammery & Remote Sensing, 2004 (58) :225 -238.
  • 3Benz U C, Peter H , Gregor W, et al. Multi-resolution , Object - oriented Fuzzy Analysis of Remote Sensing Data for GIS - ready Information[ J] . ISPRS Journal of Photogrammetry & Remote Sensing ,2004, (58) :239 - 258.
  • 4Hay G J, Castilla G. Object - based Image Analysis: Strength, Weaknesses, Opportunities and Threats ( SWOT ) [ A ]. 1 st International Conference on Object - based Image Analysis (OBIA 2006) 2006 [ C ]. Salzburg University, Austria, 2006, 7.
  • 5杜凤兰,田庆久,夏学齐,惠凤鸣.面向对象的地物分类法分析与评价[J].遥感技术与应用,2004,19(1):20-23. 被引量:138
  • 6Rafael C, Gonzalez. Digital Image Processing 2rid Edition[ M] . Beijing: Publishing House of Electronics Industry,2003.
  • 7Jos B T, Roerdink M, Arnold Meijster. The Watershed Transform: Definitions, Algorithras and Parallelization Strategies [ J ]. Fundamental Informaticae, 2001,41:87 - 228.
  • 8Vapnik V N. An Overview of Statistical Learning Theory [ J ]. IEEE Transactions on Neural Networks, 1999, 10 ( 5 ) : 988 - 999.
  • 9Wu T F, Lin C J, Weng R C. Probability Estimates for Multi - class Classification by Pairwise Coupling[ J ] . Journal of Machine Learning Research, 2004,5 ;975 - 1005.
  • 10Congalton R G. A Review Assessing the Accuracy of Classification of Remotely Sensed Data [ J ]. Remote Sens. Environ., 1991, (37) :35 -36.

二级参考文献25

  • 1周俊,晏非,孙曼.基于区域分割合并的建筑物半自动提取方法[J].海洋测绘,2005,25(1):58-60. 被引量:7
  • 2Wilkinson G G.Recent Development in Remote Sensing Technology and the Importance of Computer Vision Analysis Techniques[A].Machine Vision and Advanced Image Processing in Remote Sensing[C].1999.
  • 3Blaschke T,Lang S,Lorup E,et al.Object-oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmental Applications[A].Cremers A,Greve K(Hrsg.).Umwelt Information for Planning,Politikund Offent Lichkeit[C].Environmental Information for Panning,Politics and the Public Metropolis Verlag,Marburg,2000,2:555-570.
  • 4Mauro C,Eufem ia T.Accuracy Assessment of Per-field Classification Integrating very Fine Spatial Resolution Satellite Imagery with Topographic Data[J].Journal of Geo spatial Engineering,2001,3(2):127-134.
  • 5Benz U C,Hofmann P,Illhauck W G,et al.Multi-resolution,Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004,58:239-258.
  • 6Lobo A,Chic O,Casterad A.Classification of Mediterranean Crops with Multi-sensor Data:Per-pixel Versus Per-object Statistics and Image Segmentation[J].International Journal of Remote Sensing,1996,17:2358-2400.
  • 7Aplin P,Tkinson A P,Curran P.Per-field Classification of Land Use Using the Forthcoming very Fine Resolution Satellite Sensors:Problems and Potential Solutions[A].Advances in Remote Sensing and GIS Analysis[C].Chichester:Wiley and Son,1999.
  • 8Hellwich O,Wiedemann C.Object Extraction from High-resolution Multi-sensor Image Data[A].The 3rd International Conference on Fusion of Earth Data[C].Sophia Antipolis,France,SEEGreCA,Nice,2000.
  • 9Volker Walter.Object-based Evaluation of LIDAR and Multispectral Data for Automatic Change Detection in GIS Databases[A].XXth ISPRS Congress[C].Istanbul,Turkey(on CD-ROM).12-23 July 2004.
  • 10Teo T A,Chen L C.Object-based Building Detection from LIDAR Data and High Resolution Satellite Imagery[A].Proceedings of Asian Conference on Remote Sensing[C].Ching-Mai,Thailand(on CD-ROM).22-26 November 2004.

共引文献244

同被引文献12

  • 1Kaya S, Curran P J, Llewellyn G. Post - earthquake Building Collapse: A Comparison of Government Statistics and Estimates Derived from SPOT HRVIR Data[ J]. Int J Remote Sens,2005,26 (3) :2731 -2740.
  • 2Sakamoto M, Takasago Y, Uto K, et al. Automatic Detection of Damaged Area of Iran Earthquake by High - resolution Satellite Imagery [ C ]//Proceedings of IGARSS' 04. Alaska, 2004 : 1418 - 1421.
  • 3Turker M ,San B T. Detection of Collapsed Buildings Caused by the 1999 Izmit,Turkey Earthquake Through Digital Analysis of Post - event Aerial Photographs [ J ]. Int J Remote Sens, 2004,25 ( 21 ) : 4701 -4714.
  • 4Turker M, Cetinkaya B. Automatic Detection of Earthquake - damaged Buildings Using DEMs Created from Pre - and Post - earthquake Stereo Aerial Photographs [ J ]. Int J Remote Sens, 2005,26(4) :823 -832.
  • 5Gamba P, Dell' Acqua F, Trianni G. Rapid Damage Detection in the Barn Area Using Muhitemporal SAR and ExpLoiting Ancillary Data[ J ]. IEEE Transactions on Geoscience & Remote Sensing, 2007,45 (6) :1582 - 1589.
  • 6Alexander B, Christian H, Goepfert J, et al. Aspects of Generating Preeise Digital Terrain Models in the Wadden Sea from Lidar - water Classification and Structure Line Extraction [ J]. ISPRS Journal of Photogrammetry & Remote Sensing,2008,63 (5) :510 - 528.
  • 7Axelsson P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[ J ]. International Archives of Photogramme- try and Remote Sensing ,2000,33 ( 1 ) : 110 - 117.
  • 8Baatz M,Schape A. Multiresolution Segmentation--an Optimization Approach for High Quality Multi - scale hnage Segmentation [ C]//Strobl J, Blaschke T, Griesebner G. Angewandte Geographische Informations - Verarbeitung Ⅻ. Karlsruhe: Wichmann Verlag, 2000 : 12 - 23.
  • 9Haralick R M, Shanmugan K, Dinstein I. Textural Features for Image Classification [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, 1973,3 (6) :610 - 621.
  • 10Foody G M, Mathur A. Toward Intelligent Training of Supervised Image Classifications:Directing Training Data Acquisition for SVM Classification[ J ]. Remote Sensing of Environment, 2004,93 ( 1/ 2) :107 - 117.

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部