期刊文献+

曲面近似理论在进给速度优化研究中的应用

Application of theory on surface approximation in the research of feed-rate optimization
下载PDF
导出
摘要 提出了一种基于曲面近似理论的进给速度动态优化方法,即根据曲面在空间一点邻近范围内的近似结构类型,对近似曲面在实际加工中的不同情况进行研究,总结出若干种典型的加工工况,进行分析、定义与建模,得到典型工况下的进给优化模型;在刀位点邻域内对被加工的自由曲面类零件进行相应曲面结构类型的近似,并根据加工过程中刀位点处的曲率、走刀方向、刀轴矢量等进行简化与匹配,得到简化的工况序列,进行基于曲面近似的进给速度优化,达到对自由曲面类零件进给速度动态优化的目的。 The method for optimization of feed-rate is proposed based on the theory of surface approximation.Namely different cutting conditions of approximation surface in practical machining are studied according to the approximation type of surface on one point in space neighborhood.Several typical machining conditions are summed up, analyzed, defined and modeled,Optimization models of feed-rate for typical machining conditions are educed. In neighborhood of each CL-point the parts of free-form are approximated to the type of the typical surface.Machining conditions are matched according to the curvature, feed direction and tool axis vector of process and a series of matched machining conditions are obtained. The feed-rate based on the matched machining conditions is optimized. The purpose of optimizati on the feed-rate dynamic for machining the parts offree-form surface is achieved.
出处 《机械设计与制造》 北大核心 2008年第5期135-137,共3页 Machinery Design & Manufacture
关键词 曲面近似 自由曲面 工况匹配 Surface Approximation Free-form surface Matching of machining conditions.
  • 相关文献

参考文献1

二级参考文献8

  • 1Sharp G C, Lee S W, Wehe D K. Multiview registration of 3D scenes by minimizing error between coordinate frames[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(8):1037~1050.
  • 2Shatsky M, Nussinov R, Wolfson H J. Flexible protein alignment and hinge detection[J]. Proteins, 2002, 48(2):242~256.
  • 3Osada R, Funkhouser T, Chazelle B. Shape distributions[J]. ACM Transactions on Graphics,2002,21(4):807~832.
  • 4Alt H, Brass P, Godau M, et al. Computing the Hausdorff distance of geometric atterns and shapes[J]. Discrete and Computational Geometry, Special Issue-The Goodman-Pollack-Festschrift,2003.65~76.
  • 5Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(2):239~256.
  • 6Barequet G, Sharir M. Partial surface matching by using directed footprints[J]. Computational Geometry: Theory and Applications, 1999,12(1-2): 45~62.
  • 7Barequet G, Sharir M. Partial surface and volume matching in three dimensions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(9):929~948.
  • 8Hardy R L. Multi-quadric equations of topography and other irregular surface[J]. Journal of Geophysical research, 1971, 76(8):1905~1915.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部