摘要
文章给出了一般有限域上k阶拟广义Bent函数的定义,研究了它的一些基本性质,并考虑了它和素域上向量函数的关系。证明了k阶拟广义Bent函数的一个判别条件,同时给出了有限域上n元k阶拟广义Bent函数的典型构造。结果表明对于一般有限域上k阶拟广义Bent函数的研究可以转化为素域上对应的向量函数的研究,从而为有限域上k阶拟广义Bent函数的存在性、构造等问题提供了新的思路和方法。
In this paper, the definition of k-order quasi-generalized-Bent function over finite fields is proposed, the properties are discussed, and the relationship between k-order quasi-generalized-Bent function over finite fields and the vector functions over prime fields is studied. The sufficient and necessary condition of the k-order quasi-generalized-Bent function is proved. It gets a typical construction over finite fields. By the proposed definition, it is shown that the k-order quasi-generalized- Bent function over finite fields can be studied by vector functions over prime fields. Furthermore, we can discuss it in the new way.
出处
《信息工程大学学报》
2008年第1期14-17,共4页
Journal of Information Engineering University
基金
计算机网络与信息安全教育部实验室开放课题基金项目(20040108)
关键词
有限域
逻辑函数
k阶拟广义Bent函数
finite fields
logical function
k-order quasi-generalized-Bent function