期刊文献+

基于HMM的英语文语转换系统 被引量:3

HMM-Based English Text-to-Speech System
下载PDF
导出
摘要 研究了基于隐马尔可夫模型(HMM:Hidden Markov Model)的语音合成系统的关键技术,在此基础上,借助HTK和Festival等工具,以基频和声道谱参数为训练参数,实现了一个基于HMM的英语文语转换系统,主观试听,合成的语音流畅、清晰可懂,并把混合激励应用到系统中对激励进行改进,提高了自然度。实验结果表明,利用HMM技术实现合成单元的选择,较好地解决了文语转换系统中的协同发音的问题。 This paper focuses research on the key technology of the speech synthesis system based on HMM (Hidden Markov Model) , and, with the help of HTK and Festival, implements an English TTS system taking as training parameters the fundamental frequency and the tract parameter. The synthesized voice turns out to be clear, smooth and understandable. Applying mixed excitation to system, speech of the output is more natural. Experiments show that the application of HMM in the selection of synthetic unit can effectively solve the problem of co-articulation in text to speech systems.
出处 《信息工程大学学报》 2008年第1期31-35,共5页 Journal of Information Engineering University
基金 国家863计划资助项目(2006AA01Z146)
关键词 隐马尔可夫模型 语音合成 文语转换 参数合成 hidden Markov model speech synthesis text to speech parameter synthesis
  • 相关文献

参考文献8

  • 1Wu Yi-jian,Wang Ren-hua.Minimum generation error training for hmm-based speech synthesis[C]/ /Proceedings of the 2006 IEEE International Conference on Acoustics,Speech,and Signal Processing.Toulouse,France,May,2006,Ⅰ-92,14-19.
  • 2Pitrelli J.The IBM Expressive Text-to-Speech Synthesis System for American English[J].IEEE Transactions on Audio,Speech and Language Processing,2006,14(4):1099-1108.
  • 3Huang X,Acero A,Hon H,et al.Recent improvements On Microsoft's trainable text-to-speech system-Whistler[C]//Proc.of ICASSP.March,1997:959-962.
  • 4Junichi Yamagishi,Heiga Zen,Tomoki Toda,et al.Speaker-Independent HMM-based Speech Synthesis System-HTS-2007 System for the Blizzard Challenge 2007[C]//Proc.of BLZ3-2007.Bonn,Germany,Aug.2007:008.
  • 5Young S,Evermann G,Kershaw D,et al.The HTK Book (for HTK version 3.2)[EB/OL].(2006-12-13)[2007-03-01].http://htk.eng.cam.ac.uk/.
  • 6Yoshimura T,Tokuda K,Masuko T,et al.Simultaneous modeling of spectrum,pitch and duration in hmm-based speech synthesis[C]//Proc.of Eurospeech.1999:2374-2350.
  • 7Tokuda K,Masuko T,Miyazaki N,et al.Hidden Markov models based on multi-space probability distribution for pitch pattern modeling[C]//Proc.of ICASSP.1999:229-232.
  • 8Kominekm J.Black A.The CMU ARCTIC speech databases[C]//5th ISCA Speech Synthesis Workshop,Pittsburgh,PA.2004:223-224.

同被引文献24

  • 1高慧,苏广川,陈善广.不同情绪状态下汉语语音的声学特征分析[J].航天医学与医学工程,2005,18(5):350-354. 被引量:23
  • 2邵艳秋,韩纪庆,刘挺,赵永贞.自然风格言语的汉语句重音自动判别研究[J].声学学报,2006,31(3):203-210. 被引量:17
  • 3朱维彬.支持重音合成的汉语语音合成系统[J].中文信息学报,2007,21(3):122-128. 被引量:4
  • 4Nose T,Yamagishi J,Kobayashi T.A style control technique for HMM-based expressive speech synthesis[J].IEICE Trans Inf & Syst,2007.90(9):1406-1413.
  • 5Mc Cree A V,Barnwell III T P.A new mixed excitation LPC vocoder model for low bit rate speech coding[J].IEEE transactions on speech and audio processing,1995,3(4):959-962.
  • 6Tokuda K,Zen H,Yamagishi J,et al.The HMM-based speech synthesis system(HTS) Version 2.1[EB/OL][2008-06-27].http://hts-engine.sourceforge.net/.
  • 7Heiga Z,Keiichi T,Tadashi K.Decision Tree-based simultaneous clustering of phonetic contexts,dimension,and state position for acoustic modeling[C].Proceedings of European Conference on Speech Communication and Technology.Geneva:[s.n.],2003:3189-3192.
  • 8ZEN H,Tokuda K,Masuko T,et al.A hidden semi-Markov model-based speech synthesis system[J].IEICE Trans Inf & Syst,2007,90(5):825-834.
  • 9Toda T,Tokuda K.A speech parameter generation algorithm considering global variance for HMM-based speech synthesis[J].IEICE Trans Inf & Syst,2007,90(5):816-824.
  • 10WANG R H,LIU Qingfeng,XIA Deyu.Towards a Chinesetext-to-speech system with higher naturalness[C]//Proc.of ICSLP.Sydney:[s.n.].1998:2047-2050.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部