期刊文献+

一类积分方程最大与最小正解的存在性 被引量:1

Existence of Maximal and Minimal Positive Solutions for a Class of Integral Equations
下载PDF
导出
摘要 利用半序方法和迭代技巧,讨论了一类广义积分方程的正解,利用单调算子的不动点理论给出了其大正解与最小正解的存在性定理。 By using the parital order method and iterative technique, the positive solutions of a class of generalized integral equations are dixsussed, and the existence theorem of maximal and minimal positive solutions is deduced by using, fixed-point theory of monotone operators.
作者 杨晨
出处 《太原科技大学学报》 2008年第3期228-230,共3页 Journal of Taiyuan University of Science and Technology
关键词 积分方程 不动点 最大正解与最小正解 integral equation, fixed point, cone, maximal and minimal positive solution
  • 相关文献

参考文献7

  • 1MAR. Multiplicity of positive solutions for second-order three-point boundary value problems [ J ]. Comput. math. Appl,2000,40: 193-204.
  • 2WEBB J R L. Positive solutions of some three point boundary value problems via fixed point index theory [ J ]. Nonlinear Anal. TMA ,2001,47:4319-4332.
  • 3YANG C, ZHAI C B, YAN J R. Positive solutions of three-point boundary dary value problem for second order differential equations with an advanced argument [ J ]. Nonl. Anal,2006,65 : 2013 -2023.
  • 4翟成波.一类p-Laplacian方程混合边值问题正解的存在性[J].工程数学学报,2006,23(6):1053-1057. 被引量:3
  • 5ZHAI CHENGBO, GUO CHUNMEI. A novel fixed point theorem and its application [ J ]. Acta. Mathematica. Scientia B ,2007,27 (2) :413-420.
  • 6ZHAI C B ,GUO C M. On a-convex operators[ J ]. J. Math. Anal. Appl,2006 ,316 :556-565.
  • 7ZHAI C B,GUO C M. A surjection theorem and fixed point theorem for a class of positive operators[J]. J. Math. Anal. Appl, 2008,337:976-983.

二级参考文献4

共引文献2

同被引文献13

  • 1陈顺清.三阶p-Laplacian奇异边值问题多重正解的存在性[J].数学物理学报(A辑),2006,26(5):794-800. 被引量:7
  • 2翟成波.一类p-Laplacian方程混合边值问题正解的存在性[J].工程数学学报,2006,23(6):1053-1057. 被引量:3
  • 3翟成波,郭春梅.A NOVEL FIXED POINT THEOREM AND ITS APPLICATIONS[J].Acta Mathematica Scientia,2007,27(2):413-420. 被引量:2
  • 4DIAZ J,THELIN F DE. On a nonlinear parabolic problem arising in some models related to turbulent flows[J]. SIAM J Math/Anal, 1994,25 (4) :1085-1111.
  • 5ORUGANTI S, SHI J, SHIVAJI R. Diffusive logistic equation with constant yield harvesting, Ⅰ: Steady-states [ J ]. Trans Amer Math Soc,2002,354(9) :3601-3619.
  • 6Oruganti S, Shi J, Shivaji R. Logistic equation with p-Laplacian and constant yield harvesting [ J ]. Abstr Appl Anal, 2004 ( 9 ) : 723 -727.
  • 7GRUGANTI R, RAPPAZ J. Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology[ J ]. Math Model Numer Anal,2003,37 ( 1 ) : 175-186.
  • 8LY I, SECK D. Isoperimetric inequality for an interior free boundary problem with p-Laplacian operator[ J ], Electron J Differential Equations ,2004,109 : 1-12.
  • 9EVANS L, WANG G B. Differential equations methods for the Monge-Kantorovich mass transfer problem [ J ]. Mem Amer Math Soc 1999,137:653.
  • 10LIU B. Positive solutions of singular three-point boundary value problems for the one-dimensional p-Laplacian[ J]. Comput Math Appl, 2004,48 : 913-925.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部